A list of all publications in scientific journals that are based on data or methodology from the Alfred Wegener Institutes SIRAL project.
Peer Reviewed
Year | Citation | Keywords | Link | |
---|---|---|---|---|
1 | 2014 | Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607-1622, https://doi.org/10.5194/tc-8-1607-2014, 2014. | CryoSat-2 | The Cryosphere |
2 | 2014 | Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839-1854, https://doi.org/10.5194/tc-8-1839-2014, 2014. | CryoSat-2, model evaluation | The Cryosphere |
3 | 2014 | Yinghui Liu and Jeffrey R Key: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum, 2014 Environ. Res. Lett., 9 | CryoSat-2, Arctic | Environmental Research Letters |
4 | 2015 | Ricker, R., S. Hendricks, D. K. Perovich, V. Helm, and R. Gerdes (2015), Impact of snow accumulation on CryoSat‐2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophys. Res. Lett., 42, 4447–4455. doi: 10.1002/2015GL064081. | CryoSat-2, Arctic | Geophysical Research Letters |
5 | 2015 | Price, D., Beckers, J., Ricker, R., Kurtz, N., Rack, W., Haas, C., ... Langhorne, P. (2015). Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica. Journal of Glaciology, 61(226), 285-300. doi:10.3189/2015JoG14J157 | CryoSat-2, Antarctic | Journal of Glaciology |
6 | 2015 | Ruibo Lei, Hongjie Xie, Jia Wang, Matti Leppäranta, Ingibjörg Jónsdóttir, Zhanhai Zhang, Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012, Cold Regions Science and Technology, Volume 119, 2015, 132-144, | CryoSat-2, Arctic | Cold Regions Science and Technology |
7 | 2016 | Schwegmann, S., Rinne, E., Ricker, R., Hendricks, S., and Helm, V.: About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice, The Cryosphere, 10, 1415-1425, https://doi.org/10.5194/tc-10-1415-2016, 2016. | CryoSat-2, Envisat, Antarctic | The Cryosphere |
8 | 2016 | Wang, X.; Key, J.; Kwok, R.; Zhang, J. Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data. Remote Sens. 2016, 8, 713. | CryoSat-2, Arctic, Model Evaluation | Remote Sensing |
9 | 2016 | Ricker, R. , Hendricks, S. and Beckers, J. M. (2016): The Impact of Geophysical Corrections on Sea-Ice Freeboard Retrieved from Satellite Altimetry , Remote Sensing, 8 (4), pp. 1415-1425., doi: 10.3390/rs8040317 | CryoSat-2 | Remote Sensing |
10 | 2016 | Grosfeld, K. , Treffeisen, R. , Asseng, J. , Bartsch, A. , Bräuer, B. , Fritzsch, B. , Gerdes, R. , Hendricks, S. , Hiller, W. , Heygster, G. , Krumpen, T. , Lemke, P. , Melsheimer, C. , Nicolaus, M. , Ricker, R. and Weigelt, M. (2016): Online sea-ice knowledge and data platform <www.meereisportal.de> , Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85 (2), pp. 143-155 . doi: 10.2312/polfor.2016.011 | CryoSat-2 | Polarforschung |
11 | 2017 | Chen, Z., J. Liu, M. Song, Q. Yang, and S. Xu, 2017: Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System. J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1 | CryoSat-2, Assimilation | Journal of Climate |
12 | 2017 | Sato, K. & Inoue, J., Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations, Clim Dyn (2018) 50: 289. https://doi.org/10.1007/s00382-017-3607-z | CryoSat-2, Model evaluation | Climate Dynamics |
13 | 2017 | Ricker, R., S. Hendricks, F. Girard‐Ardhuin, L. Kaleschke, C. Lique, X. Tian‐Kunze, M. Nicolaus, and T. Krumpen (2017), Satellite‐observed drop of Arctic sea ice growth in winter 2015–2016, Geophys. Res. Lett., 44, 3236–3245, doi:10.1002/2016GL072244. | CryoSat-2, SMOS, Arctic | Geophysical Research Letters |
14 | 2017 | Marcello Passaro, Felix L. Müller, Denise Dettmering,Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images, Advances in Space Research, 2017, https://doi.org/10.1016/j.asr.2017.07.011. | CryoSat-2, Arctic | Advances in Space Research |
15 | 2017 | Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017, 2017 | CryoSat-2, SMOS, Arctic | The Cryosphere |
16 | 2017 | Skourup, H., Farrell, S. L., Hendricks, S., Ricker, R., Armitage, T. W. K., Ridout, A., … Baker, S. (2017). An assessment of state‐of‐the‐art mean sea surface and geoid models of the Arctic Ocean: Implications for sea ice freeboard retrieval. Journal of Geophysical Research: Oceans, 122, 8593–8613. https://doi.org/10.1002/2017JC013176 | CryoSat-2, Arctic | Journal of Geophysical Research - Oceans |
17 | 2017 | J. Richter-Menge and J. T. Mathis, Eds., 2017: The Arctic [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S129–S154, doi:10.1175/2017BAMSStateoftheClimate.1. | CryoSat-2, Arctic | Bulletin of the American Meteorological Society |
18 | 2017 | Lange BA, Flores H, Michel C, et al. Pan‐Arctic sea ice‐algal chl a biomass and suitable habitat are largely underestimated for multiyear ice. Glob Change Biol. 2017;23:4581–4597. https://doi.org/10.1111/gcb.13742 | CryoSat-2, Arctic | Global Change Biology |
19 | 2017 | Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, S., Ricker, R., Else, B. (2017). Effect of snow salinity on CryoSat‐2 Arctic first‐year sea ice freeboard measurements. Geophysical Research Letters, 44, 10,419–10,426. https://doi.org/10.1002/2017GL074506 | CryoSat-2, Arctic | Geophysical Research Letters |
20 | 2017 | Haas, C., Beckers, J., King, J., Silis, A., Stroeve, J., Wilkinson, J., Notenboom, B., Schweiger, A., & Hendricks, S. (2017). Ice and snow thickness variability and change in the high Arctic Ocean observed by in situ measurements. Geophysical Research Letters, 44, 10,462–10,469. https://doi.org/10.1002/2017GL075434 | CryoSat-2, Arctic | Geophysical Research Letters |
21 | 2018 | Mu, L. , Yang, Q. , Losch, M. , Losa, S. N., Ricker, R. , Nerger, L. and Liang, X. (2018), Improving sea ice thickness estimates by assimilating CryoSat‐2 and SMOS sea ice thickness data simultaneously. Q.J.R. Meteorol. Soc., 144: 529-538. doi:10.1002/qj.3225 | CryoSat-2, SMOS, Assimilation, Arctic | RMetS |
22 | 2018 | Ng AKY, Andrews J, Babb D, Lin Y, Becker A. Implications of climate change for shipping: Opening the Arctic seas. WIREs Clim Change. 2018;9:e507. https://doi.org/10.1002/wcc.507 | CryoSat-2, Arctic | WIREs Climate Change |
23 | 2018 | Kaminski, T., Kauker, F., Toudal Pedersen, L., Voßbeck, M., Haak, H., Niederdrenk, L., Hendricks, S., Ricker, R., Karcher, M., Eicken, H., and Gråbak, O.: Arctic Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance, The Cryosphere, 12, 2569-2594, https://doi.org/10.5194/tc-12-2569-2018, 2018. | CryoSat-2, Assimilation, Arctic | The Cryosphere |
24 | 2018 | Stroeve, J. C., Schroder, D., Tsamados, M., and Feltham, D.: Warm winter, thin ice?, The Cryosphere, 12, 1791-1809, https://doi.org/10.5194/tc-12-1791-2018, 2018. | CryoSat-2, Arctic | The Cryosphere |
25 | 2018 | Ricker, R., Girard-Ardhuin, F., Krumpen, T., and Lique, C.: Satellite-derived sea ice export and its impact on Arctic ice mass balance, The Cryosphere, 12, 3017-3032, https://doi.org/10.5194/tc-12-3017-2018, 2018. | CryoSat-2, Arctic | The Cryosphere |
26 | 2018 | Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437-2460, https://doi.org/10.5194/tc-12-2437-2018, 2018. | CryoSat-2, Envisat, Arctic, Antarctic | The Cryosphere |
27 | Under Review | Belmonte Rivas, M., Otosaka, I., Stoffelen, A., and Verhoef, A.: A scatterometer record of sea ice extents and backscatter: 1992–2016, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-68, in review, 2018. | CryoSat-2, Arctic | The Cryosphere Discussions |
28 | Under Review | Nakanowatari, T., Inoue, J., Sato, K., Bertino, L., Xie, J., Matsueda, M., Yamagami, A., Sugimura, T., Yabuki, H., and Otsuka, N.: Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system, The Cryosphere, 12, 2005-2020, https://doi.org/10.5194/tc-12-2005-2018, 2018. | CryoSat-2, SMOS, Assimilation, Arctic | The Cryosphere Discussions |
29 | 2018 | Xie, J., Counillon, F., and Bertino, L.: Impact of assimilating a merged sea-ice thickness from CryoSat-2 and SMOS in the Arctic reanalysis, The Cryosphere, 12, 3671-3691, https://doi.org/10.5194/tc-12-3671-2018, 2018 | CryoSat-2, SMOS, Assimilation, Arctic | The Cryosphere |
30 | Under Review | Quartly, G. D., Rinne, E., Passaro, M., Andersen, O. B., Dinardo, S., Fleury, S., Guerreiro, K., Guillot, A., Hendricks, S., Kurekin, A. A., Müller, F. L., Ricker, R., Skourup, H., and Tsamados, M.: Review of Radar Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for Sea Level and Sea Ice Research, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, in review, 2018. | CryoSat-2 | The Cryosphere Discussions |
31 | Under Review | Ponsoni, L., Massonnet, F., Fichefet, T., Chevallier, M., and Docquier, D.: On the time and length scales of the Arctic sea ice thickness anomalies: a study based on fourteen reanalyses, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-133, in review, 2018. | CryoSat-2, Arctic, Re-Analysis | The Cryosphere Discussions |
32 | 2018 | Dettmering, D.; Wynne, A.; Müller, F.L.; Passaro, M.; Seitz, F. Lead Detection in Polar Oceans—A Comparison of Different Classification Methods for Cryosat-2 SAR Data. Remote Sens. 2018, 10, 1190. | CryoSat-2 | Remote Sensing |
33 | Under Review | Schröder, D., Feltham, D. L., Tsamados, M., Ridout, A., and Tilling, R.: New insight from CryoSat-2 sea ice thickness for sea ice modelling, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-159, in review, 2018. | CryoSat-2, Arctic, Assimilation | The Cryosphere Discussions |
34 | 2018 | Julienne C Stroeve et al., 2018 Environ. Res. Lett., in press, https://doi.org/10.1088/1748-9326/aade56 | CryoSat-2, Arctic | |
35 | Under Review | Sallila, H., McCurry, J., Farrell, S. L., and Rinne, E.: Assessment of Contemporary Satellite Sea Ice Thickness Products for Arctic Sea Ice, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-197, in review, 2018. | CryoSat-2, Arctic, CS2SMOS | The Cryosphere Discussion |
36 | 2018 | D. Yi, N. Kurtz, J. Harbeck, R. Kwok, S. Hendricks and R. Ricker: Comparing Coincident Elevation and Freeboard From IceBridge and Five Different CryoSat-2 Retrackers, IEEE Transactions on Geoscience and Remote Sensing. doi: 10.1109/TGRS.2018.2865257 | CryoSat-2, Arctic | IEEE Transactions on Geoscience and Remote Sensing |
37 | 2018 | Jena B, Kumar A, Ravichandran M, Kern S (2018) Mechanism of sea-ice expansion in the Indian Ocean sector of Antarctica: Insights from satellite observation and model reanalysis. PLoS ONE 13(10): e0203222 | CryoSat-2, Antarctic | PLOS One |
38 | 2018 | Mu, L., M. Losch, Q. Yang, R. Ricker, S. Loza, and L. Nerger. (2018), Arctic‐wide sea ice thickness estimates from combining satellite remote sensing data and a dynamic ice‐ocean model with data assimilation during the CryoSat‐2 period, J. Geophys. Res. Oceans, https://doi.org/10.1029/2018JC014316 | CryoSat-2, CS2SMOS, Arctic, Assimilation | Journal of Geophysical Research - Oceans |