
fundamentals

1 Bash
1.1 Necessary (++) and useful (+) programs
1.2 Basic Login
1.3 HTTP requests
1.4 GET
1.5 PUT
1.6 DELETE
1.7 POST

2 Python
2.1 Necessary (++) and useful (+) packages
2.2 Basic Login
2.3 HTTP requests
2.4 GET
2.5 PUT
2.6 DELETE
2.7 POST

3 R
3.1 Necessary (++) and useful (+) packages
3.2 Basic Login
3.3 HTTP requests
3.4 GET
3.5 PUT
3.6 DELETE
3.7 POST

Bash

Necessary (++) and useful (+) programs

curl (++)
jq (+)

Basic Login

Using requires curl to submit to the .commandline http requests API

-c: writes the cookies (including the required auth-token) to a local file, in this case cfile
-s: silent output
https://sandbox.sensor.awi.de/rest/sensors/contacts/login: the API endpoint that is called
-X: the type of request, in this case (see)POST http requests
-o: specifies the output (if not prompted to standard output aka the console), in this case the output is piped to /dev/null
-d: introduces a data field that is submitted along the requestPOST

The following request carries two data fields, each contains a key value pair, together they deliver the authentification credentials.

curl -c cfile \
 -s \
 -X POST 'https://sandbox.sensor.awi.de/rest/sensors/contacts/login'\
 -o /dev/null \
 -d 'username=<yourUserName>' \
 -d 'authPassword=yourSecretPassword'

The cfile looks like this:

Netscape HTTP Cookie File
https://curl.haxx.se/docs/http-cookies.html
This file was generated by libcurl! Edit at your own risk.

sandbox.sensor.awi.de FALSE /sensorManagement-web FALSE 0 JSESSIONID
RaCR4vWoHo7xKn92ohy2izuxjldw68olmHDjhA0.frame-test1
.awi.de TRUE / FALSE 1670407206 x-auth-token
af9d8dce8jalf78271057345p5444022

https://curl.se/
https://stedolan.github.io/jq/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://www.w3schools.com/tags/ref_httpmethods.asp
https://en.wikipedia.org/wiki/API
https://www.w3schools.com/tags/ref_httpmethods.asp

and can be removed successful operation byafter

rm -v cfile

HTTP requests

GET

This gets basic information about an item.

curl -X GET 'https://sandbox.sensor.awi.de/rest/sensors/item/getItem/456'

or nicely parsed (because piped into):jq

curl -X GET 'https://sandbox.sensor.awi.de/rest/sensors/item/getItem/456' | jq .

PUT

You need proper privileges to modify items.

This puts a new item to .sensor.awi.de

-b: a submitted cookie (remember the login cfile?)
-X: which type of is performed, in this case http request PUT
-H: header for the request, in this case

the content is json format
json format shall be accepted

-d: introduces a data field that is submitted along the request, this is literally the submitted jsonPUT

curl -b cfile \
 -X PUT 'https://sandbox.sensor.awi.de/rest/sensors/item/createItem' \
 -H 'Content-Type: application/json' \
 -H 'Accept: application/json' \
 -d '{"description": "string", "shortName": "testnastring" , "longName": "string" , "serialNumber":
"string" , "manufacturer": "string" , "parentID": 0 , "applicationTypeID": 0 , "model": "string" ,
"inventoryNumber": "string" , "itemStatusID": 2 , "itemTypeID": 110 , "id": 0 }'

"description": --> for the overview tabstring
"shortName": --> for the overview tabstring
"longName": --> for the overview tabstring
"serialNumber": --> for the overview tabstring
"manufacturer": --> for the overview tabstring
"parentID": --> left blank if item should be parentless, otherwise enter numeric id of parental item (think about access rights for the parent, integer
too)
"applicationTypeID": ignore
"model": --> for the overview tabstring
"inventoryNumber": --> for the overview tabstring
"itemStatusID": --> either know the necessary id or ask integer https://sandbox.sensor.awi.de/rest/sensors/item

, in this case 2 refers to /getAllItemStatuses construction
"itemTypeID": --> either know the necessary id or ask integer https://sandbox.sensor.awi.de/rest/sensors/item

, in this case 110 is a /getAllItemCategories sediment_grab
"id": --> set 0, since the item is supposed to be completly newinteger

DELETE

You need proper privileges to modify items.

This deletes a certain user with a specific role from a certain item.

-b: locally stored cookie file
-X: which type of is performed, in this case http request DELETE
-H: header

https://sensor.awi.de
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp

curl -b cfile \
 -X DELETE \
 -H 'Accept: application/json' \
 'https://sandbox.sensor.awi.de/rest/sensors/contacts/deleteContactFromDevice/10877/80/29'

10877: the item ID
80: the user ID
29: the contact role ID

POST

Basically a was already done by token creation. For most purposes appears to be of minor importance.POST POST

Python

Necessary (++) and useful (+) packages

requests (++)
json (++)
re (+)
pandas (+)
datetime (+)
itertools (+)

pip install -r requirements.txt

json, , , and are built-in moduls and do not need to be installed separately.re itertools datetime

Basic Login

The carried body contains the authentification credentials as a element. The auth cookie is then extracted () from the response of the dict theToken POST
request (see).http requests

import requests
import json

auth = requests.post('https://sandbox.sensor.awi.de/rest/sensors/contacts/login'
 , data = {'username': <yourUserName>, 'authPassword': <yourSecretPassword>}
)
theToken = auth.cookies['x-auth-token']

HTTP requests

GET

This gets basic information about an item. The result is a dictionary object.

a = requests.get('https://sandbox.sensor.awi.de/rest/sensors/item/getItem/456')
theItem = json.loads(a.content)

PUT

You need proper privileges to modify items.

This puts a new item to .sensor.awi.de

https://pypi.org/project/requests/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/re.html
https://pypi.org/project/pandas/
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/itertools.html
https://www.w3schools.com/tags/ref_httpmethods.asp
https://sensor.awi.de

requests.put('https://sandbox.sensor.awi.de/rest/sensors/item/createItem'
 , data = json.dumps({
 "description": "string"
 , "shortName": "anotherteststring"
 , "longName": "string"
 , "serialNumber": "string"
 , "manufacturer": "string"
 , "parentID": 0
 , "applicationTypeID": 0
 , "model": "string"
 , "inventoryNumber": "string"
 , "itemStatusID": 2
 , "itemTypeID": 110
 , "id": 0
 })
 , headers = {"content-type": "application/json"}
 , cookies = {'x-auth-token': theToken}
)

"description": --> for the overview tabstring
"shortName": --> for the overview tabstring
"longName": --> for the overview tabstring
"serialNumber": --> for the overview tabstring
"manufacturer": --> for the overview tabstring
"parentID": --> left blank if item should be parentless, otherwise enter numeric id of parental item (think about access rights for the parent, integer
too)
"applicationTypeID": ignore
"model": --> for the overview tabstring
"inventoryNumber": --> for the overview tabstring
"itemStatusID": --> either know the necessary id or ask integer https://sandbox.sensor.awi.de/rest/sensors/item

, in this case 2 refers to /getAllItemStatuses construction
"itemTypeID": --> either know the necessary id or ask integer https://sandbox.sensor.awi.de/rest/sensors/item

, in this case 110 is a /getAllItemCategories sediment_grab
"id": --> set 0, since the item is supposed to be completly newinteger

DELETE

You need proper privileges to modify items.

This deletes a certain user with a specific role from a certain item.

requests.delete('https://sandbox.sensor.awi.de/rest/sensors/contacts/deleteContactFromDevice/10877/80/29'
 , cookies = {'x-auth-token': theToken}
 , headers = {'content-type': 'application/json'}
)

10877: the item ID
80: the user ID
29: the contact role ID

POST

Basically a was already done by token creation. For most purposes appears to be of minor importance.POST POST

R

Necessary (++) and useful (+) packages

httr (++)
lubridate (+)
jsonlite (+)
stringr (+)

install.packages(c('httr', 'lubridate', 'jsonlite', 'stringr'), dep = TRUE)

Basic Login

https://cran.r-project.org/web/packages/httr/
https://cran.r-project.org/web/packages/lubridate/
https://cran.r-project.org/web/packages/jsonlite/
https://cran.r-project.org/web/packages/stringr/

The carried body contains the authentification credentials as a list element. The auth cookie is then extracted () from the response of the theToken POST
request (see).http requests

library('httr')

x <- POST(url = 'https://sandbox.sensor.awi.de/rest/sensors/contacts/login'
 , body = list("username" = '<yourUserName>', "authPassword" = 'yourSecretPassword')
 , encode = "form"
)
theToken <- x$cookies$value[2]

HTTP requests

GET

This gets basic information about an item. The result is a list object.

GET(url = 'https://sandbox.sensor.awi.de/rest/sensors/item/getItem/456')

PUT

You need proper privileges to modify items.

This puts a new item to .sensor.awi.de

url: the API endpoint to call
add_headers: contains the wrapped auth cookie
body: a list (that is then translated to json) that holds the info about the item to be created
encode: indicates how the submitted values are encoded, in this case we preferred json

PUT(url = 'https://sandbox.sensor.awi.de/rest/sensors/item/createItem'
 , add_headers("x-auth-token" = theToken)
 , body = list(description= "string"
 , shortName = "testnashalalastring"
 , longName = "string"
 , serialNumber = "string"
 , manufacturer = "string"
 , parentID = 0
 , applicationTypeID = 0
 , model = "string"
 , inventoryNumber = "string"
 , itemStatusID = 2
 , itemTypeID = 110
 , id= 0
)
 , encode = 'json'
)

"description": --> for the overview tabstring
"shortName": --> for the overview tabstring
"longName": --> for the overview tabstring
"serialNumber": --> for the overview tabstring
"manufacturer": --> for the overview tabstring
"parentID": --> left blank if item should be parentless, otherwise enter numeric id of parental item (think about access rights for the parent, integer
too)
"applicationTypeID": ignore
"model": --> for the overview tabstring
"inventoryNumber": --> for the overview tabstring
"itemStatusID": --> either know the necessary id or ask integer https://sandbox.sensor.awi.de/rest/sensors/item

, in this case 2 refers to /getAllItemStatuses construction
"itemTypeID": --> either know the necessary id or ask integer https://sandbox.sensor.awi.de/rest/sensors/item

, in this case 110 is a /getAllItemCategories sediment_grab
"id": --> set 0, since the item is supposed to be completly newinteger

DELETE

https://www.w3schools.com/tags/ref_httpmethods.asp
https://sensor.awi.de

You need proper privileges to modify items.

This deletes a certain user with a specific role from a certain item.

DELETE(url = 'https://sandbox.sensor.awi.de/rest/sensors/contacts/deleteContactFromDevice/10877/80/29'
 , add_headers("x-auth-token" = theToken)
)

10877: the item ID
80: the user ID
29: the contact role ID

POST

Basically a was already done by token creation. For most purposes appears to be of minor importance.POST POST

	fundamentals

