
Software development
In general our O2A software is open source, free of charge and may be re-used in other contexts. Our software is administrated in the gitlab.awi.de
repository and you can also find examples on . To foster and streamline software development we want to have one central managed code github.com
basis. All splitted branches for new features and bug fixes shall be finally merged into the central branch aligned with . The agile software master Gitflow
development process for each O2A component is managed in 2-weekly sprints with following -based principles.jira-software.awi.de SCRUM

Licenses
Our O2A software is licensed under , if no other definition is given. To foster community value, we encourage you to use also , BSD-3-Clause BSD-2-Clause

 or licences for your derived works. We will only integrate your work into our managed code basis, if it is licensed the way described BSD-3-Clause MIT
before. 3rd-party libraries keep their licences and must be compatible with named licenses.

BSD-3-Clause License

Copyright 2010-2020- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Standards
Our software development follows simple rules as best practices. Use the following topics and tasks as guideline and checklist.

Version control system

Use Git. gitlab.awi.de

Commit and push your daily work.

Use semantics to structure contributions aligned with tickets.Gitflow

Each repository must have a markdown file in its root directory describing the project (see template below).README.md

Each repository must have a file in its root directory defining files to exclude or to force inclusion..gitignore

https://gitlab.awi.de
https://github.com/o2a-data/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://jira-software.awi.de/secure/Dashboard.jspa
https://www.scrumguides.org/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/MIT
https://gitlab.awi.de
https://www.atlassian.com/de/git/tutorials/comparing-workflows/gitflow-workflow

README.md template

Name of the project and repository content

* Short description of the project and repository content.

* Provide relative links to demonstrators in this repository.

* Provide an overview of the architecture and relation to other projects.

* Use diagrams.net for your sketches and provide a editable link here.

Getting started

* Describe how to start with this project.

Prerequisites

* Describe requirements to fulfill before starting.

Installing

* Describe how to install required software and this software.

Tests

* Describe how to test this software.

Deployment

* Describe how to deploy this software including required prerequisites and configuration.

Contributing

* Describe how to contribute to this project. At best you link to general [documentation](https://spaces.awi.de
/x/bu7FEw) and improve it if necessary.

Versioning

* Describe shortly the versioning approach.

Authors

* List the authors and emails here.

License

We have a BSD-3-Clause license and refer to [documentation](https://spaces.awi.de/x/bu7FEw).

Acknowledgments

* Any acknowledgements?

Notes

* Any additional notes?

.gitignore

Additional Files
.env

Created by https://www.gitignore.io/api/qt,vim,c++,java,linux,macos,python,windows,eclipse,netbeans,qtcreator,
jetbrains+all,visualstudiocode
Edit at https://www.gitignore.io/?templates=qt,vim,c++,java,linux,macos,python,windows,eclipse,netbeans,
qtcreator,jetbrains+all,visualstudiocode

C++
Prerequisites
*.d

Compiled Object files
*.slo
*.lo
*.o
*.obj

Precompiled Headers
*.gch
*.pch

Compiled Dynamic libraries
*.so
*.dylib
*.dll

Fortran module files
*.mod
*.smod

Compiled Static libraries
*.lai
*.la
*.a
*.lib

Executables
*.exe
*.out
*.app

Eclipse

.metadata
bin/
tmp/
*.tmp
*.bak
*.swp
*~.nib
local.properties
.settings/
.loadpath
.recommenders

External tool builders
.externalToolBuilders/

Locally stored "Eclipse launch configurations"
*.launch

PyDev specific (Python IDE for Eclipse)
*.pydevproject

CDT-specific (C/C++ Development Tooling)
.cproject

CDT- autotools
.autotools

Java annotation processor (APT)
.factorypath

PDT-specific (PHP Development Tools)
.buildpath

sbteclipse plugin
.target

Tern plugin
.tern-project

TeXlipse plugin
.texlipse

STS (Spring Tool Suite)
.springBeans

Code Recommenders
.recommenders/

Annotation Processing
.apt_generated/

Scala IDE specific (Scala & Java development for Eclipse)
.cache-main
.scala_dependencies
.worksheet

Eclipse Patch
Eclipse Core
.project

JDT-specific (Eclipse Java Development Tools)
.classpath

Annotation Processing
.apt_generated

.sts4-cache/

Java
Compiled class file
*.class

Log file
*.log

BlueJ files
*.ctxt

Mobile Tools for Java (J2ME)
.mtj.tmp/

Package Files
*.jar
*.war
*.nar
*.ear
*.zip
*.tar.gz
*.rar

virtual machine crash logs, see http://www.java.com/en/download/help/error_hotspot.xml
hs_err_pid*

JetBrains+all
Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm

Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839

User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf

Generated files
.idea/**/contentModel.xml

Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml

Gradle
.idea/**/gradle.xml
.idea/**/libraries

Gradle and Maven with auto-import
When using Gradle or Maven with auto-import, you should exclude module files,
since they will be recreated, and may cause churn. Uncomment if using
auto-import.
.idea/modules.xml
.idea/*.iml
.idea/modules

CMake
cmake-build-*/

Mongo Explorer plugin
.idea/**/mongoSettings.xml

File-based project format
*.iws

IntelliJ
out/

mpeltonen/sbt-idea plugin
.idea_modules/

JIRA plugin
atlassian-ide-plugin.xml

Cursive Clojure plugin
.idea/replstate.xml

Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties

Editor-based Rest Client
.idea/httpRequests

Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser

JetBrains+all Patch
Ignores the whole .idea folder and all .iml files
See https://github.com/joeblau/gitignore.io/issues/186 and https://github.com/joeblau/gitignore.io/issues/360

.idea/

Reason: https://github.com/joeblau/gitignore.io/issues/186#issuecomment-249601023

*.iml
modules.xml
.idea/misc.xml
*.ipr

Linux
*~

temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden*

KDE directory preferences
.directory

Linux trash folder which might appear on any partition or disk
.Trash-*

.nfs files are created when an open file is removed but is still being accessed
.nfs*

macOS
General
.DS_Store
.AppleDouble
.LSOverride

Icon must end with two \r
Icon

Thumbnails
._*

Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent

Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk

NetBeans
**/nbproject/private/
**/nbproject/Makefile-*.mk
**/nbproject/Package-*.bash
build/
nbbuild/
dist/
nbdist/
.nb-gradle/

Python
Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

C extensions

Distribution / packaging
.Python

develop-eggs/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

PyInstaller
Usually these files are written by a python script from a template
before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

Installer logs
pip-log.txt
pip-delete-this-directory.txt

Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/

Translations
*.mo
*.pot

Django stuff:
local_settings.py
db.sqlite3

Flask stuff:
instance/
.webassets-cache

Scrapy stuff:
.scrapy

Sphinx documentation
docs/_build/

PyBuilder
target/

Jupyter Notebook
.ipynb_checkpoints

IPython
profile_default/
ipython_config.py

pyenv
.python-version

celery beat schedule file

celerybeat-schedule

SageMath parsed files
*.sage.py

Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

Spyder project settings
.spyderproject
.spyproject

Rope project settings
.ropeproject

mkdocs documentation
/site

mypy
.mypy_cache/
.dmypy.json
dmypy.json

Pyre type checker
.pyre/

Python Patch
.venv/

Qt
C++ objects and libs

Qt-es
object_script.*.Release
object_script.*.Debug
*_plugin_import.cpp
/.qmake.cache
/.qmake.stash
*.pro.user
.pro.user.
*.qbs.user
.qbs.user.
*.moc
moc_*.cpp
moc_*.h
qrc_*.cpp
ui_*.h
*.qmlc
*.jsc
Makefile*
build-

Qt unit tests
target_wrapper.*

QtCreator
*.autosave

QtCreator Qml
*.qmlproject.user
.qmlproject.user.

QtCreator CMake
CMakeLists.txt.user*

QtCreator
gitignore for Qt Creator like IDE for pure C/C++ project without Qt
#
Reference: http://doc.qt.io/qtcreator/creator-project-generic.html

Qt Creator autogenerated files

A listing of all the files included in the project
*.files

Include directories
*.includes

Project configuration settings like predefined Macros
*.config

Qt Creator settings
*.creator

User project settings
.creator.user

Qt Creator backups

Vim
Swap
[._]*.s[a-v][a-z]
[._]*.sw[a-p]
[._]s[a-rt-v][a-z]
[._]ss[a-gi-z]
[._]sw[a-p]

Session
Session.vim

Temporary
.netrwhist
Auto-generated tag files
tags
Persistent undo
[._]*.un~

VisualStudioCode
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json

VisualStudioCode Patch
Ignore all local history of files
.history

Windows
Windows thumbnail cache files
Thumbs.db
ehthumbs.db
ehthumbs_vista.db

Dump file
*.stackdump

Folder config file
[Dd]esktop.ini

Recycle Bin used on file shares
$RECYCLE.BIN/

Windows Installer files
*.cab
*.msi
*.msix
*.msm
*.msp

Windows shortcuts
*.lnk

End of https://www.gitignore.io/api/qt,vim,c++,java,linux,macos,python,windows,eclipse,netbeans,qtcreator,
jetbrains+all,visualstudiocode

Ticketing - documentation of work

Document and describe your work and requirements in stories, tasks and bugs. - jira-software.awi.de

Define a definition of done.

Put new things into the backlog.

Define a definition of ready, when do you can start to work on a ticket.

Estimate the effort for a ticket.

Only ready tickets go into a sprint.

Set the software version to a ticket.

Keep track of progress and log your work.

Documentation and tests are part of the work within a ticket.

Check definition of done, then done.

Documentation

Provide an up-to-date description of the project. - README.md

Provide a "getting started" description for developers. - README.md

Provide a "deployment" description for developers to setup. - README.md

Create architecture and relationship diagrams where necessary to get an overview .for others

Use simple diagrams - blocks and edges - where useful and provided editable formats. Best go for .diagrams.net

For details use UML standardized diagrams. Best go for .diagrams.net

Document and comment your code. It's part of your daily work.

Provide admin documentation to setup the project including configuration description.

Provide usage and API documentation for end users. Be clear, not technical.

For web services use documentation.Swagger

Code style

Align your code structure and documentation to .Google Style Guides

Document your code short and clear. Your (not involved) colleague should easily jump in.

Use and place a file in your project root to force basic code styling.Editorconfig .editorconfig

https://jira-software.awi.de
http://diagrams.net
http://diagrams.net
https://swagger.io/
https://google.github.io/styleguide/
https://editorconfig.org

.editorconfig

root = true

[*]
charset = utf-8
end_of_line = lf
indent_size = 2
indent_style = space
insert_final_newline = true
trim_trailing_whitespace = true

[*.md]
trim_trailing_whitespace = false

[*.{js,py}]
charset = utf-8

[*.{php,py}]
indent_style = space
indent_size = 4

[*.yml]
indent_size = 2

[Makefile]
indent_style = tab

[lib/**.js]
indent_style = space
indent_size = 2

[{package.json,.travis.yml}]
indent_style = space
indent_size = 2

Languages

We focus on specific languages for client-side and server-side developments and data processing. We try to keep dependencies to 3rd-party libraries as
low as possible. These decisions are based on a trade-off estimate between effort and sustainability. So take the following points as guideline.

Client-side

Use basic JavaScript supported features.

Follow the , code style guides.JavaScript HTML/CSS

Don't get for 3rd-party libraries for simple and standard functions if not required. Discuss the trade-off.

Use JavaScript modules where ever possible and useful. Keep an eye on re-usability and usage in other contexts.

Provide an index.js in module directories to bundle useful module classes.

Always provide for classes, methods and integrations. Don't comment every line or simple getters and setters.JSDoc

Use primary used frameworks: , , , , . Discuss using frameworks like , or similar.Bootstrap Leaflet D3.js Plotly jQuery React Vue

Use bundling tools for web-optimizing, not for primary development.

Server-side

Use Java for middleware and backend.

Follow the code style guide.Java

Use for dependency and build management.Maven

Always provide avadoc for classes, methods and integrations. Don't comment every line or simple getters and setters.J

Use primary defined standards and long-term sustained libraries, e.g. with implementation.Java Persistence API Hibernate

Use logging libraries for system outputs and write to files, e.g. .Log4j

https://google.github.io/styleguide/jsguide.html
https://google.github.io/styleguide/htmlcssguide.html
https://jsdoc.app/
https://getbootstrap.com/
https://leafletjs.com/
https://d3js.org/
https://plotly.com/javascript/
https://jquery.com/
https://react-redux.js.org/
https://vuejs.org/
https://google.github.io/styleguide/javaguide.html
https://maven.apache.org/
https://jsdoc.app/
https://www.oracle.com/java/technologies/persistence-jsp.html
https://hibernate.org/
https://logging.apache.org/log4j/2.x/

Install snapshots and releases to repository manager (only AWI internal access).Nexus

Of course other languages are possible. But we clearly focus on Java. For example you can use PHP for simple web application or portal tasks. But don't
develop heavy software. even if you go with or similar. Use for dependency management.Laravel Composer

Processing

Use Python for data processing and automation tasks.

Follow the code style guide.Python

Use for dependencies with pip or conda.virtual environments

Provide a file in the project repository root directory.requirements.txt

Always provide comments for classes, methods and integrations. Don't comment every line or simple getters and setters.

Use primary used libraries and sustained libraries, e.g. , , .pandas requests tensorflow

Use for system outputs and write to files.logging

Tests

Tests exists for my commit?

Write unit tests for methods and critical workflows.

Write integration and system tests from frontend (grey) to backend (black).

Check requirements for development, test and production environment.

Use pipeline.Gitlab Continuous Integration

Conventions

Project and repository names

Always define a namespace for the project like for e.g. .de.awi. de.awi.sensor

Software versions

Make sure your version covers also documentation and tests.

Use the paradigm.Semantic Versioning

Use 0.x.y as major version during initial development phase.

Use version 1.0.0 as the official first public release.

Don't prepend "v" or similar to a version.

Commit messages

Each commit must relate to a ticket.

Use the ticket ID and short description syntax for commits. For example DAS-134 - Fixed dragging of tiles

If multiple tickets need to get references, add the uppercase ticket IDs in the body of the commit message.

Branch names

Use syntax and semantics.Gitflow

Each feature, bugfix, hotfix branch requires a ticket.

Prepare release branches with the defined software version.

master
develop

 - Use underscores. For example: feature/[ticket ID]_[short_name] feature/SEN-312_create_versions
bugfix/[ticket ID]_[short_name] - Use underscores. For example: bugfix/DAS-134_tile_dragging
hotfix/[ticket ID]_[short_name] - Use underscores. For example: hotfix/DAS-134_tile_dragging

 - For example release/[version] release/1.24.3

https://se-infra2.awi.de/nexus/
https://laravel.com/
https://getcomposer.org/
https://google.github.io/styleguide/pyguide.html
https://docs.python.org/3/tutorial/venv.html
https://pandas.pydata.org/
https://requests.readthedocs.io/en/master/
https://www.tensorflow.org/
https://docs.python.org/3.7/howto/logging.html
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://semver.org/
https://www.atlassian.com/de/git/tutorials/comparing-workflows/gitflow-workflow

	Software development

