Software development

In general our O2A software is open source, free of charge and may be re-used in other contexts. Our software is administrated in the gitlab.awi.de
repository and you can also find examples on github.com. To foster and streamline software development we want to have one central managed code
basis. All splitted branches for new features and bug fixes shall be finally merged into the central master branch aligned with Gitflow. The agile software
development process for each O2A component is managed in 2-weekly sprints with jira-software.awi.de following SCRUM-based principles.

Licenses

Our O2A software is licensed under BSD-3-Clause, if no other definition is given. To foster community value, we encourage you to use also BSD-2-Clause,
BSD-3-Clause or MIT licences for your derived works. We will only integrate your work into our managed code basis, if it is licensed the way described
before. 3rd-party libraries keep their licences and must be compatible with named licenses.

BSD-3-Clause License

Copyright 2010-2020- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Redi stribution and use in source and binary fornms, with or wthout
nodi fication, are permtted provided that the followi ng conditions are net:

1. Redistributions of source code nust retain the above copyright notice, this
list of conditions and the follow ng disclainer.

2. Redistributions in binary form nmust reproduce the above copyright notice,
this list of conditions and the follow ng disclaimer in the docunentation
and/or other materials provided with the distribution.

3. Neither the nane of the copyright holder nor the nanes of its
contributors may be used to endorse or pronote products derived from
this software w thout specific prior witten pernission.

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S"
AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE

I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE
DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT HOLDER OR CONTRI BUTORS BE LI ABLE
FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL
DAVAGES (I NCLUDI NG BUT NOT LIMTED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR
SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER
CAUSED AND ON ANY THECRY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING | N ANY WAY QUT OF THE USE
OF THI'S SCFTWARE, EVEN I F ADVI SED OF THE PCSSI BI LI TY OF SUCH DAVAGE.

Standards

Our software development follows simple rules as best practices. Use the following topics and tasks as guideline and checklist.

Version control system

Use Git. gitlab.awi.de

Commit and push your daily work.

Use Gitflow semantics to structure contributions aligned with tickets.

Each repository must have a READVE. nd markdown file in its root directory describing the project (see template below).

Each repository must have a . gi ti gnor e file in its root directory defining files to exclude or to force inclusion.

https://gitlab.awi.de
https://github.com/o2a-data/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://jira-software.awi.de/secure/Dashboard.jspa
https://www.scrumguides.org/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/MIT
https://gitlab.awi.de
https://www.atlassian.com/de/git/tutorials/comparing-workflows/gitflow-workflow

README.md template

Nanme of the project and repository content

* Short description of the project and repository content.

* Provide relative links to denpnstrators in this repository.

* Provide an overview of the architecture and relation to other projects.

* Use [diagrams. net] (https://diagrans.net) for your sketches and provide a editable |ink here.

Getting started

* Describe howto start with this project.

Prerequisites

* Describe requirenents to fulfill before starting.

Installing

* Describe howto install required software and this software.

Tests

* Describe howto test this software.

Depl oyment

* Describe how to deploy this software including required prerequisites and configuration.

Contributing

* Describe how to contribute to this project. At best you link to general [docunentation](https://spaces.aw .de
/ x/ bu7FEw) and inmprove it if necessary.

Ver si oni ng

* Describe shortly the versioning approach.

Aut hors

* List the authors and enmils here.

License

We have a BSD-3-Cl ause license and refer to [docunentation](https://spaces.aw . de/ x/ bu7FEw) .

Acknow edgnents

* Any acknow edgenent s?

Not es

* Any additional notes?

.gitignore

Additional Files
.env

Created by https://ww.gitignore.io/api/qt,vimc++,java,linux, macos, pyt hon, wi ndows, ecl i pse, net beans, gt creat or
j etbrains+al |, vi sual studi ocode

Edit at https://ww.gitignore.io/?tenpl ates=qt, vimc++,java, | i nux, macos, pyt hon, wi ndows, ecl i pse, net beans,
gtcreator, jetbrains+al |, vi sual studi ocode

###H CH+ ###H
Prerequisites
*.d

Conpiled Cbject files
.slo

*lo

*.0

* . obj

*

Preconpi |l ed Headers
*.gch
*. pch

Conpiled Dynanmic libraries
*.s0

*.dylib

*.dl

Fortran nodule files
* . mod

*. snod

Conpiled Static libraries

*. la
*la
*.a

* lib

Execut abl es
*.exe
* . out
*.app

Eclipse

. met adat a

bi n/

t mp/

*.tnp

* . bak

*S\Np

*~ nib

I ocal . properties
.settings/

.| oadpat h

. recommender s

External tool builders
. ext ernal Tool Bui | der s/

Locally stored "Eclipse |aunch configurations"”
*. | aunch

H*

PyDev specific (Python IDE for Eclipse)
. pydevpr oj ect

*

CDT-specific (C C++ Devel opment Tool i ng)
. cproj ect

CDT- autotools
.autotool s

Java annotation processor (APT)
.factorypath

PDT-specific (PHP Devel opnent Tool s)
. bui I dpat h

sbteclipse plugin
.target

Tern plugin
.tern-project

TeXl ipse plugin
.texlipse

STS (Spring Tool Suite)
. springBeans

Code Recommenders
. recomender s/

Annot ation Processing
. apt _gener at ed/

Scala | DE specific (Scala & Java devel opnent for Eclipse)
.cache-main

. scal a_dependenci es

. wor ksheet

Ecli pse Patch
Eclipse Core
. proj ect

JDT-specific (Eclipse Java Devel opnent Tool s)
.classpath

Annot ati on Processing
. apt _gener at ed

. sts4-cache/

Java
Conpiled class file
*.cl ass

Log file
*. 1l og

Blued files
*. ctxt

Mobile Tools for Java (J2ME)
.ntj.tnp/

Package Files
*jar

*.owar

*. nar

*.ear

*.zip

*. tar.gz

*.rar

virtual machine crash |ogs, see http://ww.]java. conl en/ downl oad/ hel p/ error_hot spot. xm
hs_err_pi d*

Jet Brai ns+al |
Covers JetBrains IDEs: IntelliJ, RubyMne, PhpStorm AppCode, PyCharm CLion, Android Studio and WebStorm

Reference: https://intellij-support.jetbrains.com hc/en-us/articles/206544839

User-specific stuff

.ideal/ **/ wor kspace. xm

.ideal **/tasks.xn
.ideal/**/usage. statistics.xnl
.ideal/**/dictionaries

.ideal/ **/shel f

Generated files
.ideal/ **/ cont ent Model . xni

Sensitive or high-churn files
. i deal **/ dat aSour ces/

.ideal/ **/ dat aSour ces. i ds

.ideal/ **/ dat aSour ces. | ocal . xni

. i deal/ **/ sql Dat aSour ces. xni
.ideal/**/dynam c. xm

. i deal/ **/ ui Desi gner. xni

.ideal/ **/ dbnavi gat or . xni

Gradle
.ideal/**/gradl e. xm
.idea/**/libraries

Gradl e and Maven with auto-inport

Wien using Gradle or Maven with auto-inport, you should exclude nodule files,
since they will be recreated, and may cause churn. Uncomment if using

aut o-i nport.

. i dea/ modul es. xni

.idea/*.inm

. i dea/ modul es

HoHOHH R B R

CMake
crmeke- bui | d-*/

Mongo Explorer plugin
.ideal **/ mongoSettings. xn

Fil e-based project format

*iws
Intellid
out/

npel tonen/ sbt-idea plugin
. i dea_nodul es/

JIRA plugin
at | assi an-i de- pl ugi n. xm

Cursive Cojure plugin
.ideal/repl state. xm

Crashlytics plugin (for Android Studio and IntelliJ)
com crashl ytics_export_strings. xn

crashl ytics. properties

crashl ytics-build. properties

fabric.properties

Editor-based Rest Cient
.ideal htt pRequests

Android studio 3.1+ serialized cache file
.ideal/ caches/build_fil e_checksuns. ser

JetBrai ns+al | Patch
lgnores the whole .idea folder and all .im files
See https://github.conijoeblau/gitignore.io/issues/186 and https://github.conljoeblau/gitignore.iol/issues/360

. i dea/

Reason: https://github.conljoeblau/gitignore.iolissues/186#i ssueconment-249601023

*oinm
nmodul es. xn
.idea/msc.xn
* . ipr

Li nux

*

tenporary files which can be created if a process still has a handle open of a deleted file
. fuse_hi dden*

KDE directory preferences
.directory

Linux trash fol der which nmight appear on any partition or disk
. Trash-*

.nfs files are created when an open file is renpved but is still being accessed
. nf s*

macOS
Gener al
.DS_Store

. Appl eDoubl e
.LSOverride

lcon nust end with two \r
I con

Thunbnail s

*

Files that m ght appear in the root of a volune
. Docunent Revi si ons- V100

.fseventsd

. Spot | i ght - V100

. Tenporaryl tens

. Trashes

. Vol unel con. i cns

.com appl e. ti nemachi ne. donot pr esent

Directories potentially created on renpte AFP share
. Appl eDB

. Appl eDeskt op

Net wor k Trash Fol der

Tenmporary Itens

. apdi sk

Net Beans

**[nbproj ect/private/

**[nbproj ect/ Makefil e-*. mk
** [nbproj ect/ Package- *. bash
bui I d/

nbbui | d/

di st/

nbdi st/

. nb-gradl e/

Python

Byte-conpiled / optimzed / DLL files
__pycache__/

*. py[cod]

*$py. cl ass

C extensions

Distribution / packaging
. Pyt hon

devel op- eggs/
downl oads/
eggs/

. eggs/

i b/

I'i b64/

parts/

sdi st/

var/

wheel s/

shar e/ pyt hon- wheel s/
*.egg-infol
.installed.cfg
*.egg

MANI FEST

Pyl nstal |l er

R

mani f est
. spec

*

Installer |ogs
pi p-10g. t xt

pi p-del ete-this-directory.txt

Unit test / coverage reports

ht m cov/

. tox/

. nox/

. cover age
.coverage.*
.cache
noset est s. xn
cover age. xni
*. cover

. hypot hesi s/
. pyt est _cache/

Transl ations
*. o
* . pot

Dj ango stuff:
| ocal _settings. py
db.sqlite3

Flask stuff:
i nstance/

. webasset s- cache

Scrapy stuff:
. scrapy

Sphi nx docunentation

docs/ _bui I d/
PyBui | der
target/

Jupyter Notebook
. i pynb_checkpoints

1 Pyt hon
profile_default/
i python_confi g. py

pyenv
. pyt hon-version

celery beat schedule file

so as to inject date/other

Usually these files are witten by a python script froma tenplate
before Pylnstaller builds the exe

infos into it.

cel erybeat - schedul e

SageMat h parsed files
*.sage. py

Environments
. env

.venv

env/

venv/

ENV/

env. bak/

venv. bak/

Spyder project settings
. spyder pr oj ect
. spyproj ect

Rope project settings
. ropeproj ect

nkdocs docunentation
/site

nypy

. nypy_cache/
.dnypy. j son
dnypy. j son

Pyre type checker
. pyre/

Pyt hon Patch
.venv/

#itt Q H#iHt
C++ objects and libs

Q-es

obj ect _script.*. Rel ease
obj ect _script.*. Debug
* _plugin_i nport.cpp
/. gmake. cache

/. qmake. st ash
*.pro.user
.pro.user.

*. qbs. user

.gbs. user.

*. noc

nmoc_*. cpp

noc_*. h

gre_*.cpp

ui_*.h

*.qmc

*.jsc

Makefil e*

bui | d-

Q@ unit tests
target _wrapper. *

Q Creator
* . aut osave

H*

Q Creator Qu
.gnl proj ect. user
.qnml proj ect. user.

*

Q Creator CMake
CMakeLi sts. txt.user*

Q Creator

gitignore for @ Creator like IDE for pure C/ C++ project w thout Q
#

Reference: http://doc.qt.io/gtcreator/creator-project-generic.htmn

Q@ Creator autogenerated files

H

Alisting of all the files included in the project
.files

*

Include directories
.includes

*

Project configuration settings |ike predefined Macros
*. config

H*

Q Creator settings
.creator

*

User project settings
.Creator.user*

*

Q@ Creator backups

##4# Vi m ###

Swap
[._1*.s[av][a-2]
[._1*. swa-p]

[. Is[a-rt-v][a-z]
[._Iss[a-gi-z]

[. _Iswa-p]

Session
Sessi on.vim

Tenporary

. netrwhi st

Auto-generated tag files
tags

Persistent undo

[._]* un~

Vi sual St udi oCode
.vscode/ *

1. vscode/settings.json

. vscode/tasks.json

1. vscode/ | aunch. j son

. vscode/ ext ensi ons. j son

Vi sual St udi oCode Patch

Ignore all local history of files
.history

W ndows

W ndows thunbnail cache files
Thunbs. db

eht hunbs. db

eht hunbs_vi sta. db

Dunp file
* . stackdunp

Fol der config file
[Dd] eskt op. i ni

Recycle Bin used on file shares
$RECYCLE. BI N

#
j

Ti

W ndows Installer files
.cab

. i

. MBI X

. mem

. mBp

W ndows shortcuts
.1 nk

End of https://ww. gitignore.io/api/qt,vimc++, java,|linux, macos, pyt hon, wi ndows, ecl i pse, net beans, gt creator,
et brai ns+al |, vi sual st udi ocode

cketing - documentation of work

Document and describe your work and requirements in stories, tasks and bugs. - jira-software.awi.de
Define a definition of done.

Put new things into the backlog.

Define a definition of ready, when do you can start to work on a ticket.

Estimate the effort for a ticket.

Only ready tickets go into a sprint.

Set the software version to a ticket.

Keep track of progress and log your work.

Documentation and tests are part of the work within a ticket.

Check definition of done, then done.

Documentation

Provide an up-to-date description of the project. - README. nd

Provide a "getting started" description for developers. - READVE. nd

Provide a "deployment" description for developers to setup. - READMVE. nd

Create architecture and relationship diagrams where necessary to get an overview for others.

Use simple diagrams - blocks and edges - where useful and provided editable formats. Best go for diagrams.net.
For details use UML standardized diagrams. Best go for diagrams.net.

Document and comment your code. It's part of your daily work.

Provide admin documentation to setup the project including configuration description.

Provide usage and API documentation for end users. Be clear, not technical.

For web services use Swagger documentation.

Code style

Align your code structure and documentation to Google Style Guides.
Document your code short and clear. Your (not involved) colleague should easily jump in.

Use Editorconfig and place a . edi t or confi g file in your project root to force basic code styling.

https://jira-software.awi.de
http://diagrams.net
http://diagrams.net
https://swagger.io/
https://google.github.io/styleguide/
https://editorconfig.org

.editorconfig

root = true

[*]

charset = utf-8

end_of _line = |f

indent _size = 2

i ndent _style = space
insert_final _newine = true
trimtrailing_whitespace = true

[*.]
trimtrailing_whitespace = fal se

[*.{is py}]
charset = utf-8

[*.{php, py}]
i ndent _style = space
indent_size = 4

[*.ynm]
indent _size = 2

[Makefile]
indent _style = tab

[lib/**.js]
indent _style = space
i ndent _si ze = 2

[{package. json,.travis.ym}]
i ndent _styl e = space
indent _size = 2

Languages

We focus on specific languages for client-side and server-side developments and data processing. We try to keep dependencies to 3rd-party libraries as
low as possible. These decisions are based on a trade-off estimate between effort and sustainability. So take the following points as guideline.

Client-side

Use basic JavaScript supported features.

Follow the JavaScript, HTML/CSS code style guides.

Don't get for 3rd-party libraries for simple and standard functions if not required. Discuss the trade-off.

Use JavaScript modules where ever possible and useful. Keep an eye on re-usability and usage in other contexts.

Provide an index.js in module directories to bundle useful module classes.

Always provide JSDoc for classes, methods and integrations. Don't comment every line or simple getters and setters.

Use primary used frameworks: Bootstrap, Leaflet, D3.js, Plotly, jQuery. Discuss using frameworks like React, Vue or similar.

Use bundling tools for web-optimizing, not for primary development.

Server-side

Use Java for middleware and backend.

Follow the Java code style guide.

Use Maven for dependency and build management.

Always provide Javadoc for classes, methods and integrations. Don't comment every line or simple getters and setters.
Use primary defined standards and long-term sustained libraries, e.g. Java Persistence API with Hibernate implementation.

Use logging libraries for system outputs and write to files, e.g. Log4j.

https://google.github.io/styleguide/jsguide.html
https://google.github.io/styleguide/htmlcssguide.html
https://jsdoc.app/
https://getbootstrap.com/
https://leafletjs.com/
https://d3js.org/
https://plotly.com/javascript/
https://jquery.com/
https://react-redux.js.org/
https://vuejs.org/
https://google.github.io/styleguide/javaguide.html
https://maven.apache.org/
https://jsdoc.app/
https://www.oracle.com/java/technologies/persistence-jsp.html
https://hibernate.org/
https://logging.apache.org/log4j/2.x/

Install snapshots and releases to Nexus repository manager (only AWI internal access).

Of course other languages are possible. But we clearly focus on Java. For example you can use PHP for simple web application or portal tasks. But don't
develop heavy software. even if you go with Laravel or similar. Use Composer for dependency management.

Processing

Use Python for data processing and automation tasks.

Follow the Python code style guide.

Use virtual environments for dependencies with pip or conda.

Provide ar equi renent s. t xt file in the project repository root directory.

Always provide comments for classes, methods and integrations. Don't comment every line or simple getters and setters.
Use primary used libraries and sustained libraries, e.g. pandas, requests, tensorflow.

Use logging for system outputs and write to files.

Tests

Tests exists for my commit?

Write unit tests for methods and critical workflows.

Write integration and system tests from frontend (grey) to backend (black).
Check requirements for development, test and production environment.

Use Gitlab Continuous Integration pipeline.

Conventions

Project and repository names

Always define a namespace for the project like de. awi . for e.g. de. awi . sensor.

Software versions

Make sure your version covers also documentation and tests.
Use the Semantic Versioning paradigm.

Use 0.x.y as major version during initial development phase.
Use version 1.0.0 as the official first public release.

Don't prepend "v" or similar to a version.

Commit messages

Each commit must relate to a ticket.
Use the ticket ID and short description syntax for commits. For example DAS- 134 - Fi xed draggi ng of tiles

If multiple tickets need to get references, add the uppercase ticket IDs in the body of the commit message.

Branch names

Use Gitflow syntax and semantics.
Each feature, bugfix, hotfix branch requires a ticket.

Prepare release branches with the defined software version.

nmast er

devel op

feature/[ticket 1D _[short_nane] - Use underscores. For example: f eat ur e/ SEN- 312_cr eat e_ver si ons
bugfix/[ticket 1D]_[short_nane] - Use underscores. For example: bugfi x/ DAS-134_ti | e_dr aggi ng
hotfix/[ticket ID]_[short_nane] - Use underscores. For example: hot fi x/ DAS- 134_ti | e_dr aggi ng

rel ease/ [version] - Forexamplerel ease/ 1. 24. 3

https://se-infra2.awi.de/nexus/
https://laravel.com/
https://getcomposer.org/
https://google.github.io/styleguide/pyguide.html
https://docs.python.org/3/tutorial/venv.html
https://pandas.pydata.org/
https://requests.readthedocs.io/en/master/
https://www.tensorflow.org/
https://docs.python.org/3.7/howto/logging.html
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://semver.org/
https://www.atlassian.com/de/git/tutorials/comparing-workflows/gitflow-workflow

	Software development

