Please note: Although these Information about the usage of S3 are correct, the S3-gateway@AWI is still under construction and not available for users, yet. However, if you have use cases you may contact Pavan Kumar Siligam . He collects use cases.
There are verity of S3 clients to choose from and here are few that covers both command line based interaction to S3 bucket and also python scripting based interaction.
The clients that are covered here are:
Configuration for each of these tools is a bit different in terms of credentials naming conventions.
First setup the software stack using conda
conda create -y -n s3 python=3.12 conda activate s3 pip install aws-shell pip install s3cmd conda install -y -c conda-forge s3fs boto3 python-magic pyyaml |
It is not required to install every thing as listed above. Installing only the required ones also works.
Lets say the following information is provided by the system administrator
URL:PORT => https://hssrv2.dmawi.de:$PORT region/location => bhv ACCESS_KEY => $GRP SECRET_KEY => $SECRET CERTS_FILE => https://spaces.awi.de/download/attachments/494210152/HSM_S3gw.cert.pem |
These credentials are to be adapted for each of the clients as they fit accordingly.
Please make sure to download the certificate file.
Use aws configure
to adapt the credentials to this tool or create the following files.
[default] aws_access_key_id=$GRP aws_secret_access_key=$SECRET |
[default] region = bhv endpoint_url = https://hssrv2.dmawi.de:$PORT ca_bundle = HSM_S3gw.cert.pem |
Listing the buckets
> aws s3 ls 2024-04-06 01:11:30 testdir > aws s3 ls s3://testdir 2024-04-06 01:11:30 385458 tmp.csv |
s3cmd
is a free command line tool and client for uploading
, retrieving
and managing data
in Amazon S3 and other cloud storage service providers that use the S3 protocol.
s3cmd
look for credentials at ${HOME}/.s3cfg
create the config file as follows
[default] host_base = hssrv2.dmawi.de:$PORT host_bucket = hssrv2.dmawi.de:$PORT bucket_location = bhv access_key = $GRP secret_key = $SECRET use_https = Yes ca_certs_file = HSM_S3gw.cert.pem |
Listing the buckets
> s3cmd ls 2024-04-06 01:11 s3://testdir > s3cmd ls s3://testdir 2024-04-06 01:11 385458 s3://testdir/tmp.csv |
upload a directory
> s3cmd sync --stats demo-airtemp/ s3://testdir/demo-airtemp/ Done. Uploaded 5569414 bytes in 62.8 seconds, 86.61 KB/s. Stats: Number of files transferred: 306 (5569414 bytes) > s3cmd ls s3://testdir/demo-airtemp DIR s3://testdir/demo-airtemp/ > s3cmd ls s3://testdir/demo-airtemp/ DIR s3://testdir/demo-airtemp/air/ DIR s3://testdir/demo-airtemp/lat/ DIR s3://testdir/demo-airtemp/lon/ DIR s3://testdir/demo-airtemp/time/ 2024-04-07 15:57 307 s3://testdir/demo-airtemp/.zattrs 2024-04-07 15:57 24 s3://testdir/demo-airtemp/.zgroup 2024-04-07 15:57 3969 s3://testdir/demo-airtemp/.zmetadata |
Note: trailing forward-slash /
matters in both listing the objects and as-well in transferring files ( `sync` ) to S3.
Features the following:
s3fs is a bit flexible with config file naming convention and also with the file format of the config file. Users are free to choose to store their credentials in either yaml or json or any other format that is convenient for them read and load them. Here these credentials are shown as a yaml format just because it a bit reader friendly.
key: $GRP secret: $SECRET client_kwargs: endpoint_url: https://hssrv2.dmawi.de:$PORT verify: HSM_S3gw.cert.pem region_name: bhv |
Write a utility function to read the config file
import os import yaml import s3fs def get_fs(): with open(os.path.expanduser("~/.s3fs")) as fid: credentials = yaml.safe_load(fid) return s3fs.S3FileSystem(**credentials) |
listing bucket
>>> fs = get_fs() >>> fs.ls('testdir') ['testdir/demo-airtemp', 'testdir/tmp.csv'] >>> >>> fs.ls('testdir/demo-airtemp') ['testdir/demo-airtemp/.zattrs', 'testdir/demo-airtemp/.zgroup', 'testdir/demo-airtemp/.zmetadata', 'testdir/demo-airtemp/air', 'testdir/demo-airtemp/lat', 'testdir/demo-airtemp/lon', 'testdir/demo-airtemp/time'] |
download file
>>> fs.get("testdir/demo-airtemp/.zattrs", "zattrs") [None] >>> >>> # reading the local file `zattrs` to check if all bytes are transfered >>> import json >>> with open("zattrs") as fid: ... content = json.load(fid) ... >>> print(content) {'Conventions': 'COARDS', 'description': 'Data is from NMC initialized reanalysis\n' '(4x/day). These are the 0.9950 sigma level values.', 'platform': 'Model', 'references': 'http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html', 'title': '4x daily NMC reanalysis (1948)'} >>> |
directly read a file from s3
>>> with fs.open("testdir/demo-airtemp/.zattrs", mode="rb") as f: ... content = f.read().decode() ... content = json.loads(content) ... >>> print(content) {'Conventions': 'COARDS', 'description': 'Data is from NMC initialized reanalysis\n' '(4x/day). These are the 0.9950 sigma level values.', 'platform': 'Model', 'references': 'http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html', 'title': '4x daily NMC reanalysis (1948)'} >>> |
Further documentation:
check out their API for function signatures and also their documentation for more examples.
Save the credentials as follows (user is free to choose the convenient file name and file format)
service_name: s3 aws_access_key_id: $GRP aws_secret_access_key: $SECRET endpoint_url: https://hssrv2.dmawi.de:$PORT region_name: bhv verify: HSM_S3gw.cert.pem |
Write a utility function to read the config file
import os import yaml import boto3 def get_connection(): with open(os.path.expanduser("~/.s3fs_boto")) as fid: credentials = yaml.safe_load(fid) return boto3.client(**credentials) |
Listing buckets and objects
>>> conn = get_connection() >>> # Listing buckets >>> print(conn.list_buckets()) {'Buckets': [{'CreationDate': datetime.datetime(2024, 4, 7, 15, 57, 46, 944296, tzinfo=tzoffset(None, 7200)), 'Name': 'testdir'}], 'Owner': {'DisplayName': '', 'ID': '$GRP'}, 'ResponseMetadata': {'HTTPHeaders': {'connection': 'close', 'content-length': '315', 'content-type': 'application/xml', 'date': 'Sun, 07 Apr 2024 21:50:03 GMT', 'server': 'VERSITYGW'}, 'HTTPStatusCode': 200, 'RetryAttempts': 0}} >>> >>> # filtering down the results just to show the bucket names >>> for bucket in conn.list_buckets().get('Buckets'): ... print(bucket['Name']) ... 'testdir' >>> # Listing objects >>> objs = conn.list_objects(Bucket='testdir') >>> print(obj) {'Delimiter': '', 'EncodingType': '', 'IsTruncated': False, 'Marker': '', 'MaxKeys': 1000, 'Name': 'testdir', 'NextMarker': '', 'Prefix': '', 'ResponseMetadata': {'HTTPHeaders': {'connection': 'close', 'content-length': '67702', 'content-type': 'application/xml', 'date': 'Sun, 07 Apr 2024 21:58:15 GMT', 'server': 'VERSITYGW'}, 'HTTPStatusCode': 200, 'RetryAttempts': 0}, 'Contents': [{'ETag': '5f0137574247761b438aa508333f487d', 'Key': 'tmp.csv', 'LastModified': datetime.datetime(2024, 4, 6, 1, 11, 30, 890787, tzinfo=tzoffset(None, 7200)), 'Size': 385458, 'StorageClass': 'STANDARD'}, {'ETag': 'd776a1b6e8dc88615118832c552afd4c', 'Key': 'demo-airtemp/lon/0', 'LastModified': datetime.datetime(2024, 4, 7, 15, 58, 49, 37104, tzinfo=tzoffset(None, 7200)), 'Size': 118, 'StorageClass': 'STANDARD'}, {'ETag': 'ffe3e35a2a10544db446cb5ffb64516b', 'Key': 'demo-airtemp/time/.zarray', 'LastModified': datetime.datetime(2024, 4, 7, 15, 58, 49, 410103, tzinfo=tzoffset(None, 7200)), 'Size': 319, 'StorageClass': 'STANDARD'}, {'ETag': 'c3469e3ac4f2746bdb750335dbcd104a', 'Key': 'demo-airtemp/time/.zattrs', 'LastModified': datetime.datetime(2024, 4, 7, 15, 58, 49, 520103, tzinfo=tzoffset(None, 7200)), 'Size': 172, 'StorageClass': 'STANDARD'}, ... ... {'ETag': '7c6e83fce9aa546ec903ca93f036a2fd', 'Key': 'demo-airtemp/time/0', 'LastModified': datetime.datetime(2024, 4, 7, 15, 58, 49, 630102, tzinfo=tzoffset(None, 7200)), 'Size': 2549, 'StorageClass': 'STANDARD'}]} |
The output for listing the objects is truncated on purpose to avoid filling up this page. Unlike the other clients, botocore provides a lot of metadata information related to buckets and objects.
This is brief introduction to s3 with the focus of knowing some tools and how to configure them in order to talk to s3.
Additional information related to this topic is found here https://pad.gwdg.de/WH0xt_MGTkitDxP3NAM7Xw?view
A talk on this topic also available at https://docs.gwdg.de/lib/exe/fetch.php?media=en:services:application_services:high_performance_computing:coffee:a_brief_introduction_on_ceph_s3-compatible_object_storage_at_gwdg.mp4