Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Excerpt

A list of all publications in scientific journals that are based on data or methodology from the Alfred Wegener Institutes SIRAL project.

Peer Reviewed


YearCitationKeywordsLink
12014Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607-1622, https://doi.org/10.5194/tc-8-1607-2014, 2014. CryoSat-2The Cryosphere
22014Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839-1854, https://doi.org/10.5194/tc-8-1839-2014, 2014. CryoSat-2, model evaluationThe Cryosphere
32014Yinghui Liu and Jeffrey R Key: Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum, 2014 Environ. Res. Lett., 9CryoSat-2, ArcticEnvironmental Research Letters
42015Ricker, R., S. Hendricks, D. K. Perovich, V. Helm, and R. Gerdes (2015), Impact of snow accumulation on CryoSat‐2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophys. Res. Lett., 42, 4447–4455. doi: 10.1002/2015GL064081.CryoSat-2, ArcticGeophysical Research Letters
52015Price, D., Beckers, J., Ricker, R., Kurtz, N., Rack, W., Haas, C., ... Langhorne, P. (2015). Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica. Journal of Glaciology, 61(226), 285-300. doi:10.3189/2015JoG14J157CryoSat-2, AntarcticJournal of Glaciology
62015

Ruibo Lei, Hongjie Xie, Jia Wang, Matti Leppäranta, Ingibjörg Jónsdóttir, Zhanhai Zhang, Changes in sea ice conditions along the Arctic Northeast Passage from 1979 to 2012, Cold Regions Science and Technology, Volume 119, 2015, 132-144,

CryoSat-2, ArcticCold Regions Science and Technology
72016 Schwegmann, S., Rinne, E., Ricker, R., Hendricks, S., and Helm, V.: About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice, The Cryosphere, 10, 1415-1425, https://doi.org/10.5194/tc-10-1415-2016, 2016. CryoSat-2, Envisat, AntarcticThe Cryosphere
82016Wang, X.; Key, J.; Kwok, R.; Zhang, J. Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data. Remote Sens. 2016, 8, 713.CryoSat-2, Arctic, Model EvaluationRemote Sensing
92016Ricker, R. , Hendricks, S. and Beckers, J. M. (2016): The Impact of Geophysical Corrections on Sea-Ice Freeboard Retrieved from Satellite Altimetry , Remote Sensing, 8 (4), pp. 1415-1425., doi: 10.3390/rs8040317CryoSat-2Remote Sensing
102016Grosfeld, K. , Treffeisen, R. , Asseng, J. , Bartsch, A. , Bräuer, B. , Fritzsch, B. , Gerdes, R. , Hendricks, S. , Hiller, W. , Heygster, G. , Krumpen, T. , Lemke, P. , Melsheimer, C. , Nicolaus, M. , Ricker, R. and Weigelt, M. (2016): Online sea-ice knowledge and data platform <www.meereisportal.de> , Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85 (2), pp. 143-155 . doi: 10.2312/polfor.2016.011CryoSat-2Polarforschung
112017Chen, Z., J. Liu, M. Song, Q. Yang, and S. Xu, 2017: Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System. J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1CryoSat-2, AssimilationJournal of Climate
122017Sato, K. & Inoue, J., Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations, Clim Dyn (2018) 50: 289. https://doi.org/10.1007/s00382-017-3607-zCryoSat-2, Model evaluationClimate Dynamics
132017Ricker, R., S. Hendricks, F. Girard‐Ardhuin, L. Kaleschke, C. Lique, X. Tian‐Kunze, M. Nicolaus, and T. Krumpen (2017), Satellite‐observed drop of Arctic sea ice growth in winter 2015–2016, Geophys. Res. Lett., 44, 3236–3245, doi:10.1002/2016GL072244.CryoSat-2, SMOS, ArcticGeophysical Research Letters
142017

Marcello Passaro, Felix L. Müller, Denise Dettmering,Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images, Advances in Space Research, 2017, https://doi.org/10.1016/j.asr.2017.07.011.

CryoSat-2, ArcticAdvances in Space Research
152017Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607-1623, https://doi.org/10.5194/tc-11-1607-2017, 2017CryoSat-2, SMOS, ArcticThe Cryosphere
162017Skourup, H., Farrell, S. L., Hendricks, S., Ricker, R., Armitage, T. W. K., Ridout, A., … Baker, S. (2017). An assessment of state‐of‐the‐art mean sea surface and geoid models of the Arctic Ocean: Implications for sea ice freeboard retrieval. Journal of Geophysical Research: Oceans, 122, 8593–8613. https://doi.org/10.1002/2017JC013176CryoSat-2, ArcticJournal of Geophysical Research - Oceans
172017J. Richter-Menge and J. T. Mathis, Eds., 2017: The Arctic [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S129–S154, doi:10.1175/2017BAMSStateoftheClimate.1.CryoSat-2, ArcticBulletin of the American Meteorological Society
182017Lange BA, Flores H, Michel C, et al. Pan‐Arctic sea ice‐algal chl a biomass and suitable habitat are largely underestimated for multiyear ice. Glob Change Biol. 2017;23:4581–4597. https://doi.org/10.1111/gcb.13742CryoSat-2, ArcticGlobal Change Biology
192017Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, S., Ricker, R., Else, B. (2017). Effect of snow salinity on CryoSat‐2 Arctic first‐year sea ice freeboard measurements. Geophysical Research Letters, 44, 10,419–10,426. https://doi.org/10.1002/2017GL074506CryoSat-2, ArcticGeophysical Research Letters
202017Haas, C., Beckers, J., King, J., Silis, A., Stroeve, J., Wilkinson, J., Notenboom, B., Schweiger, A., & Hendricks, S. (2017). Ice and snow thickness variability and change in the high Arctic Ocean observed by in situ measurements. Geophysical Research Letters, 44, 10,462–10,469. https://doi.org/10.1002/2017GL075434CryoSat-2, ArcticGeophysical Research Letters
212018Mu, L. , Yang, Q. , Losch, M. , Losa, S. N., Ricker, R. , Nerger, L. and Liang, X. (2018), Improving sea ice thickness estimates by assimilating CryoSat‐2 and SMOS sea ice thickness data simultaneously. Q.J.R. Meteorol. Soc., 144: 529-538. doi:10.1002/qj.3225CryoSat-2, SMOS, Assimilation, ArcticRMetS
222018Ng AKY, Andrews J, Babb D, Lin Y, Becker A. Implications of climate change for shipping: Opening the Arctic seas. WIREs Clim Change. 2018;9:e507. https://doi.org/10.1002/wcc.507CryoSat-2, ArcticWIREs Climate Change
232018Kaminski, T., Kauker, F., Toudal Pedersen, L., Voßbeck, M., Haak, H., Niederdrenk, L., Hendricks, S., Ricker, R., Karcher, M., Eicken, H., and Gråbak, O.: Arctic Mission Benefit Analysis: impact of sea ice thickness, freeboard, and snow depth products on sea ice forecast performance, The Cryosphere, 12, 2569-2594, https://doi.org/10.5194/tc-12-2569-2018, 2018. CryoSat-2, Assimilation, ArcticThe Cryosphere
242018Stroeve, J. C., Schroder, D., Tsamados, M., and Feltham, D.: Warm winter, thin ice?, The Cryosphere, 12, 1791-1809, https://doi.org/10.5194/tc-12-1791-2018, 2018. CryoSat-2, ArcticThe Cryosphere
252018Ricker, R., Girard-Ardhuin, F., Krumpen, T., and Lique, C.: Satellite-derived sea ice export and its impact on Arctic ice mass balance, The Cryosphere, 12, 3017-3032, https://doi.org/10.5194/tc-12-3017-2018, 2018.
CryoSat-2, ArcticThe Cryosphere
262018Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437-2460, https://doi.org/10.5194/tc-12-2437-2018, 2018. CryoSat-2, Envisat, Arctic, AntarcticThe Cryosphere
272018Belmonte Rivas, M., Otosaka, I., Stoffelen, A., and Verhoef, A.: A scatterometer record of sea ice extents and backscatter: 1992–2016, The Cryosphere, 12, 2941-2953, https://doi.org/10.5194/tc-12-2941-2018, 2018.CryoSat-2, ArcticThe Cryosphere
282018Nakanowatari, T., Inoue, J., Sato, K., Bertino, L., Xie, J., Matsueda, M., Yamagami, A., Sugimura, T., Yabuki, H., and Otsuka, N.: Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system, The Cryosphere, 12, 2005-2020, https://doi.org/10.5194/tc-12-2005-2018, 2018. CryoSat-2, SMOS, Assimilation, ArcticThe Cryosphere
292018 Xie, J., Counillon, F., and Bertino, L.: Impact of assimilating a merged sea-ice thickness from CryoSat-2 and SMOS in the Arctic reanalysis, The Cryosphere, 12, 3671-3691, https://doi.org/10.5194/tc-12-3671-2018, 2018CryoSat-2, SMOS, Assimilation, ArcticThe Cryosphere
30Under ReviewQuartly, G. D., Rinne, E., Passaro, M., Andersen, O. B., Dinardo, S., Fleury, S., Guerreiro, K., Guillot, A., Hendricks, S., Kurekin, A. A., Müller, F. L., Ricker, R., Skourup, H., and Tsamados, M.: Review of Radar Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for Sea Level and Sea Ice Research, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, in review, 2018.CryoSat-2The Cryosphere Discussions
31Under ReviewPonsoni, L., Massonnet, F., Fichefet, T., Chevallier, M., and Docquier, D.: On the time and length scales of the Arctic sea ice thickness anomalies: a study based on fourteen reanalyses, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-133, in review, 2018.CryoSat-2, Arctic, Re-AnalysisThe Cryosphere Discussions
322018Dettmering, D.; Wynne, A.; Müller, F.L.; Passaro, M.; Seitz, F. Lead Detection in Polar Oceans—A Comparison of Different Classification Methods for Cryosat-2 SAR Data. Remote Sens. 2018, 10, 1190.CryoSat-2Remote Sensing
332018Julienne C Stroeve et al., 2018 Environ. Res. Lett., in press, https://doi.org/10.1088/1748-9326/aade56CryoSat-2, Arctic

Environmental Research Letters

34Under ReviewSallila, H., McCurry, J., Farrell, S. L., and Rinne, E.: Assessment of Contemporary Satellite Sea Ice Thickness Products for Arctic Sea Ice, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-197, in review, 2018.CryoSat-2, Arctic, CS2SMOSThe Cryosphere Discussion
352018D. Yi, N. Kurtz, J. Harbeck, R. Kwok, S. Hendricks and R. Ricker: Comparing Coincident Elevation and Freeboard From IceBridge and Five Different CryoSat-2 Retrackers, IEEE Transactions on Geoscience and Remote Sensing. doi: 10.1109/TGRS.2018.2865257CryoSat-2, ArcticIEEE Transactions on Geoscience and Remote Sensing
362018Jena B, Kumar A, Ravichandran M, Kern S (2018) Mechanism of sea-ice expansion in the Indian Ocean sector of Antarctica: Insights from satellite observation and model reanalysis. PLoS ONE 13(10): e0203222CryoSat-2, AntarcticPLOS One
372018Mu, L., M. Losch, Q. Yang, R. Ricker, S. Loza, and L. Nerger. (2018), Arctic‐wide sea ice thickness estimates from combining satellite remote sensing data and a dynamic ice‐ocean model with data assimilation during the CryoSat‐2 period, J. Geophys. Res. Oceans, https://doi.org/10.1029/2018JC014316CryoSat-2, CS2SMOS, Arctic, AssimilationJournal of Geophysical Research - Oceans
38Under ReviewAn, B. W., Lee, S. M., Chang, P.-H., Kang, K., and Kim, Y. J.: Seasonal sea ice forecast skills and predictability of the KMA's GloSea5, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-217, in review, 2018.CryoSat-2, Arctic, Model EvaluationThe Cryosphere Discussion
392018

Prasad, S., Zakharov, I., McGuire, P., Power, D., and Richard, M.: Estimation of sea ice parameters from sea ice model with assimilated ice concentration and SST, The Cryosphere, 12, 3949-3965, https://doi.org/10.5194/tc-12-3949-2018, 2018.

CryoSat-2, Arctic, Model EvaluationThe Cryosphere
402019Schröder, D., Feltham, D. L., Tsamados, M., Ridout, A., and Tilling, R.: New insight from CryoSat-2 sea ice thickness for sea ice modelling, The Cryosphere, 13, 125-139, https://doi.org/10.5194/tc-13-125-2019, 2019.CryoSat-2, Arctic, AssimilationThe Cryosphere