

Faculty of Electrical and Computer Engineering, Chair of Fundamentals of Electronics

AWI - AI user group meeting

Unmasking Clever Hans Predictors An introduction to explainable Al-assisted human fault diagnosis

Steffen Seitz

Prof. Ronald Tetzlaff

Dresden, 06.12.22

Classic Machine Learning vs. Deep Learning

Explainability vs. Performance

Classic **machine learning** classification approaches where fundamentally **explainable** in some sense since these model algorithms were already understandable by default. Unfortunately, these methods lack on the **performance** side compared to modern **Deep Learning** based approaches.

Deep Learning Features

In MLP the extracted **features** are stored across the **weights**.

FC + Softmax

FC

Unmasking Clever Hans Predictors - An Introduction to Explainable AI-assisted Human Fault Diagnosis Steffen Seitz AWI - AI user group meeting

724x224 112x112

28x28

Feature map

Filters

Why do we need Explainable AI? (XAI) Unmasking Clever Hans Predictors

 Horse-picture from Pascal VOC data set
 Artificial picture of a car

 Image: Source tag present
 Image: Source tag present

 Image: Classified as horse
 Classified as horse

 Image: Source tag present
 Image: Source tag present

 Image: Source tag present
 Image: Source tag present

Trivia: The clever Hans

Hans was a horse that was claimed to have performed arithmetic and other intellectual tasks was actually responding directly to involuntary cues in the body language of the human trainer

DL-Algorithms are supposed to find the **easiest solution** to a given **problem**. In the case of a **Clever Hans predictor**, the algorithm utilizes information **given by mistake** to skip learning the underlying (hard) problem. Instead it develops a surprisingly trivial solution. This approach is considered as **"cheating"** since if the information is taken away the models **true performance** is still close to **random guessing**.

*Lapuschkin, S., Wäldchen, S., Binder, A. et al. Unmasking Clever Hans predictors and assessing what machines really learn. Nat Commun **10**, 1096 (2019). https://doi.org/10.1038/s41467-019-08987-4

Perturbation based Methods Feature Visualization by Occlusion

What part of an Image is **relevant** to a Neural Networks decision?

A native approach to this is the **occlusion** of specific **pixels** or **regions** in an Image.

Here we **iterate** over regions of the image, set a patch of the image to be all **zero**, and look at the **probability** of the class.

Matthew Zeiler: Visualizing and Understanding Convolutional Networks (2013)

Backpropagation based Methods CAM and GradCam

ML-Research has shown that <u>convolutional</u> feature maps **retain** spatial information, which is **lost** in <u>fully-connected</u> layers (MLP). **Last Conv Layer** can be thought as the important **features** for the classification.

→ Classificate from these feature Maps after using **GAP** and **sum** the **weighted positive** feature Maps = CAM (make them positive by ReLu(x)) \rightarrow Compute the GAP pooled gradient of the last layer

$L^c_{Grad-CAM} \sim = \sum lpha^c_k A^k$ = CAM Feature Map Australian terrier $lpha_k^c = rac{1}{uv} \sum_{i=1}^u \sum_{j=1}^v rac{dy^c}{dA_{i,j}^k}$ GAP of Gradient (GradCam) ReLu **Class Activation Mapping** Class $L^{c}_{Grad-CAM} = ReLU\left(\sum_{k=1}^{K} lpha^{c}_{k} A^{k} ight)$ $+ ... + W_{n} *$ Activation Map

ReLu because we are only interested in the **features** that have a **positive influence** on the class of interest

W1 *

Unmasking Clever Hans Predictors - An Introduction to Explainable AI-assisted Human Fault Diagnosis Steffen Seitz AWI - AI user group meeting

Global Average Pooling (GAP)

Weight (Cam)

= GradCAM

u =6

Number

of FMaps \searrow_{K}

Taxonomy Agnostic vs. Specific

Model **agnostic** methods like the previously seen **occlusion** method by Zeiler and Fergus do **not require** a certain **model type** to work. These methods do **not** have direct access to the **internal model weights** or structural parameters.

Model **specific** interpretation methods (e.g. **GradCAM**) are based on the parameters of the individual models.

Taxonomy Global vs. Local

Local explainability

Model Output:

"For the classification of this lighthouse I used the following input features"

Global Explainability

<u>Model Output:</u>

"For the classification of all of the lighthouses I mainly used the following input features"

Taxonomy Pre- vs In- vs Post-hoc

Pre-model methods

Pre-model methods are independent and does not depend on a particular model architecture to use it on. They are applied **pre training** to **explain** more the **data** then the actual model itself.

Taxonomy Pre- vs In- vs Post-hoc

In-model methods

In model methods are created **while training** the algorithm itself. They are often a **side product** of the **models structure**. They can be accessed while inference.

Model

Je

student <s>

am

а

Unmasking Clever Hans Predictors - An Introduction to Explainable Al-assisted Human Fault Diagnosis Steffen Seitz AWI - Al user group meeting

attention

weights

suis étudiant

<end>

Taxonomy Pre- vs In- vs Post-hoc

Test

Post-hoc methods are applied after the training process of the model. They can use the model at inference to create meaningful insights about what it might has learned.

Example: GradCAM

Taxonomy Surrogate vs. Visualization

Surrogate

The idea is that we take our "black box" model and **create predictions** using it. Then we train a **transparent surrogate** model on the predictions **produced** by the "black box" model and **compare** the black-box model's decision and surrogate model's decision.

Visualization

Visualization methods are not a different model, but it helps to explain some parts of the models by visual understanding like activation maps or GradCAM images.

XAI State of the Art

How do we measure the quality of any XAI method?

There are **many XAI methods** out there e.g. Lime, GradCAM, LRP, SHAP... just to name a few. But which is the **best**?

This is what I see quite regularly.

Authors often **evaluate** XAI methods based on a **"visual proof".** A **non-subjective** comparison method similar to the accuracy for image classification is needed!

Alternative: Occlude unimportant regions based on XAI

Figure 8. XRAI (2nd row) compared to Integrated Gradients with random baselines (3rd row) and GradCam (bottom row). Grad-Cam can produce blobby regions, whereas XRAI tend to create regions tightly bound around identified objects.

> Downside: It's an evaluation based on the same model that led to the XAI input. It is therefore **not** independent truly **independent**. → External grading would be useful

Explainable artificial intelligence for fault diagnosis: Impacts on human diagnostic processes and performance

Problem context: chocolate moulding

XAI-Dia Experiments

We will conduct studies to **compare human affection** and **XAI** based explainations. We aim to validate different XAI methods based on the intersection (e.g. IoU) between **human gaze** based **heatmaps** and **XAI visualisations**.

Unfortunately, we still need to **wait** for the labeled chocolate data. Thus we will perform pre-studies on the **Places365 Dataset**. (e.g. study different XAI behaviour).

Model Specific Performance Example: GradCAM

Model dependent algorithms can have **different results** even if asked for the same explaination.

VGG 16

7 x 7 x 512

convolution + Rel

max pooling fully nected + ReLU softmax

1 x 1 x 4096 1 x 1 x 1000

224 x 224 x 3 224 x 224 x 64

Combinations of model & XAI method can **suffer from artefacts** that can overrule XAI based explanations **despite** of **high accuracy** in the models prediction.

Resnet152

weight layer

weight layer

relu

x

identity

 $\mathcal{F}(\mathbf{x})$

 $\mathcal{F}(\mathbf{x}) + \mathbf{x}$

34-layer residual

Salient Object Focus

The results and the explanations for some classes **focus** on so called **salient objects** even if they are **not asked** for the **salient class explanation** context. This is a known **problem** also in **human gaze** based heatmapping.

Class Dominance for Images without Salient Objects

The explanations for some classes **focus** on **specific regions** of the dominant class. This happens if the class is not present in the picture.

This also seems to happen if the class (here it is sky) is also **present but nondominant** in the image.

Similiar Class Overlap

If **classes** are too **similar**, the XAI visualizations of different objectives merge. In these cases the model explanations seems to see no difference between these classes despite a **computer room** can look **very different** from an **office**. (This could also be a problem of a dominant class, but we are not sure yet)

Thank you for your attention! I am happy to answer questions.

Backup

Sensor Raw Data Monitoring Classification of Ultrasound

In 2016, I conducted an entry level study for myself:

Recognize the coin based on raw sound data!

The classifier has been integrated into the Sonotec device and presented at CeBit in 2018 (advertisement)

Triva: All of my students have to **re-do** it today ... instead of MNIST.

Erklärbarkeit von Klassifikationen Erste Versuche - Münzklassifikation

Die bereits erwähnte Münzklassifikation lässt sich auch über ein klassisches Merkmal realisieren das auf der Erkennung der **charackteristischen Frequenzen** beim Aufprall beruht.

Zur Analyse was das Netzwerk aus den Sensordaten (ohne dieses Vorwissen) **"gelernt"** hat wurde **t-SNE** (t-distributed stochastic neighbor embedding), ein Verfahren zur Dimensionsreduktion (ähnlich PCA) eingesetzt.

Die Überlappung von Bereichen deuten auf entdeckte **Gemeinsamkeiten** bei der Klassifikation verschiedener Münzen hin. Diese Gemeinsamkeiten sind **identisch** zu denen der charackteristischen Frequenzen.

→ Das Netzwerk **muss** die charackteristischen Frequenzen bestimmt haben.

Charackteristische Frequenzen

t-SNE des "latent Layers" des Netzwerks

