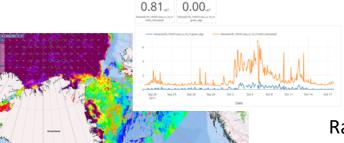
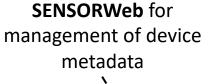


DataManagement in MOSAiC Overview Safety Briefing Leg 1 - Tromsø

Antonia Immerz, Johannes Käßbohrer, Peter Gerchow, Franziska Nehring



Data Flow in MOSAiC



Raw and primary data archiving at AWI and primarily PANGAEA.

Majority of data transfers after each leg

DSHIP-ActionLog for Device-Operation ID management

Sensor Data
Metadata Acquisiti

Data Data Acquisition Ingestion

Data Storage

Monitoring

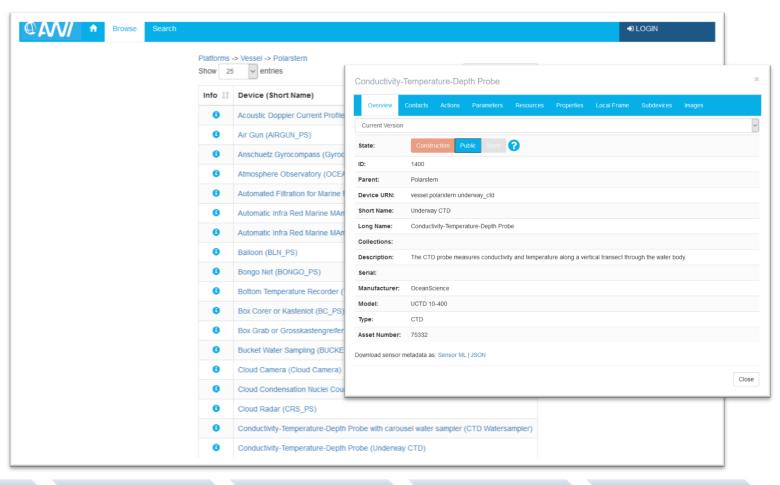
Data Analysis

Data Archiving Data transfer via satellite, local LAN, radio LAN as stream and/or in delayed mode MOSAiC Central Storage and workspace

Using workspace and
Marketplace (VMs) e.g. with
Jupyter Notebook (R or
Python) or Bash-Script or or

HELMHOLTZ GEMEINSCHAFT

Sensor metadata description (SENSORWeb) is the basis for all parts!!!



Describe your sensor only once with SENSORWeb

✓ Then sensor data can be ingested, stored, monitored, analysed

and archived

- SENSORWeb does not manage measurement data
- SENSORWeb manages metadata of
 - Research platforms
 - Sensors
 - Sampling Devices

SENSORWeb

 Sensor Information System - Create and manage meta data of devices and sensors

https://sensor.awi.de/?urn=vessel:polarstern:ctd_watersampler

Parent Item-Type: Vessel Parent Item: RV Polarstern

Sub Item: CTD Watersampler

Subdevices

Altimeter

Lowered Acoustic Doppler Current Profiler

SBE32 water sampler

SBE3plus temperature sensor

SBE4 conductivity sensor

SBE43 oxygen sensor

Transmissiometer

Parameters

conductivity temperature altimeter transmission oxygen pressure fluorescence

Overview

Long and short names Manufacturer Model-Nr.

Properties

- used for quality checks: e.g. Water temperature min/max values

Contact

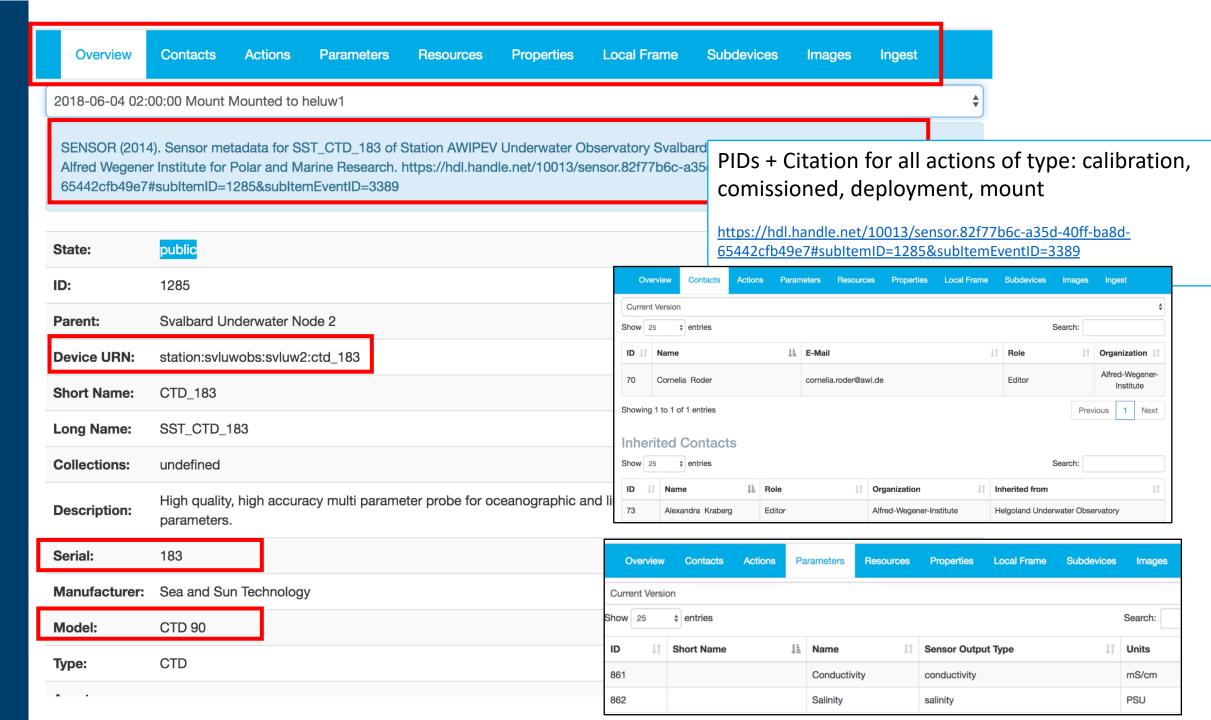
Owner: AWI

Editor: Peter Gerchow

Engineer in Charge: Marius Hirsekorn

Principal Investigator: ...

Data Scientist: ...
Data Provider: ...


Resources

- factsheets
- calibration certificates
- manuals

Actions

Deployment Recovery

Item State

Construction:

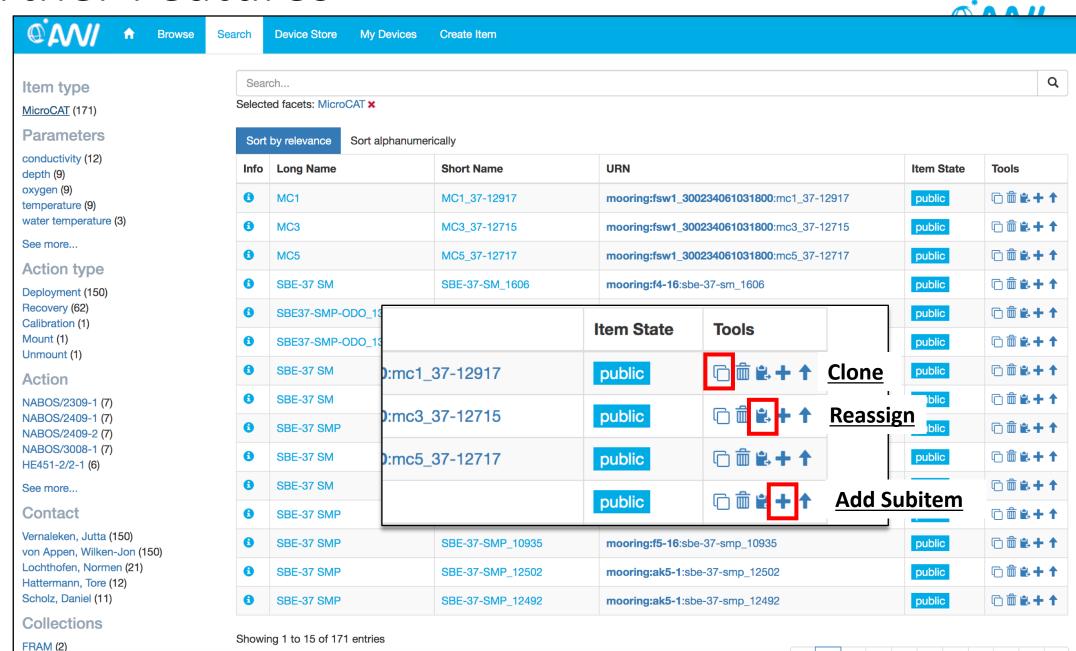
- Seen only by "editor" of this device under "My Devices"
- Not ready for publication

Public:

- Seen by everybody (no Login)
- Ready for publication
- Public devices should not be deleted. (Measured data would loose metadata)

Store:

- Devices that are not in use
- Devices at the store


Further Features

Facetted Search

« 1

2

3 4 5

Platformtypes in SENSOR

@*****

- Aircraft
- Buoy
- Laboratory
- Mooring
- Pack Ice
- Satellite
- Small Boat
- Station

- TowedSystem
- Vehicle
- Vessel
- Model

Device URNs

- URN (Uniform ResourceName)
 - Unique name of an item
 - Example: vessel:ps:adcp
 - Composed of short names
 - The path to your data on the MOSAiC Central Storage (MCS) is based on the URN
 - Example: .../vessel/ps/adcp
 - It is human readable in contrast to a numeric ID
- Short name
 - catchy abbreviations of your item name
 - Polarstern-> PS
 - AcousticDoppler CurrentProfiler-> ADCP
 - can't be edited by a user, only admins can change the short name

Structure of an Item: Contact Roles

- Special function of roles:
 - Editor: can edit items, has write acess respective device directory on MOSAiC Central Storage (MCS)
 - Owner: defines the institute owning the item
 - dship connector -> import sensors into DSHIP
 - Data Provider -> write acess to raw data directory on MCS
- Other roles
 - Data Scientist
 - Engineer in Charge
 - Principal Investigator

Collections

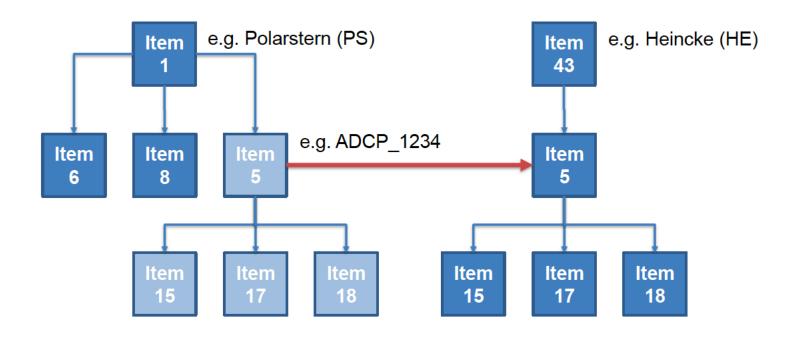
@***AV/**

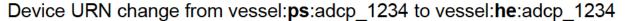
- MOSAiC-Aircraft
- MOSAiC-ATMOS
- MOSAiC-BGC
- MOSAiC-ECO
- MOSAiC-ICE
- MOSAiC-Modelling
- MOSAiC-OCEAN
- MOSAiC-RemoteSensing

Action Types in SENSOR

@***AV/**

- Calibration (create version)
- Comissioned (create version)
- Configuration
- Decomissioned
- Deployment (create version)
- Information
- Maintenance


- Mission
- Mount (create version)
- Partial failure
- Recovery
- Total failure

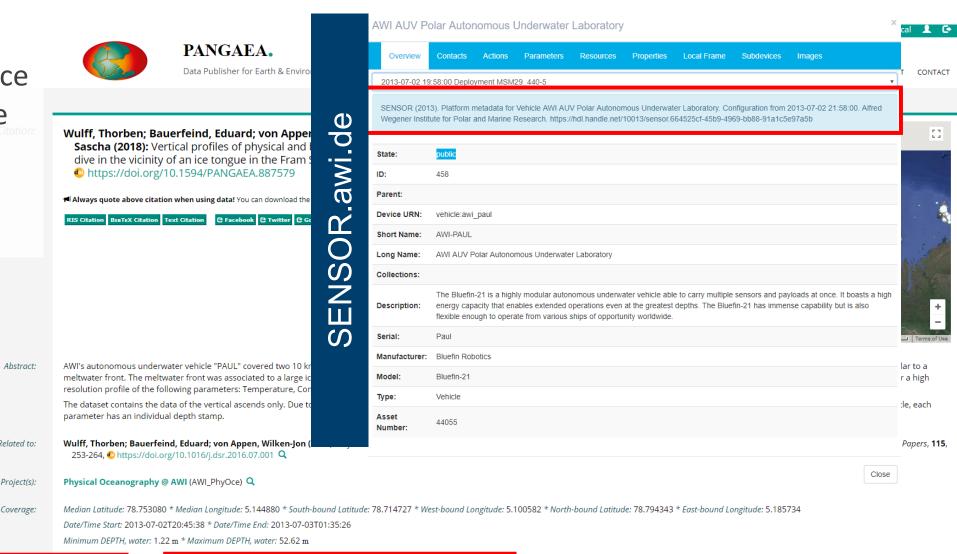


Reassignment

- Items can be assigned to a different parent
 - Changes URN of device
 - Best practice: create a new version of device

Linking PANGAEA to SENSOR

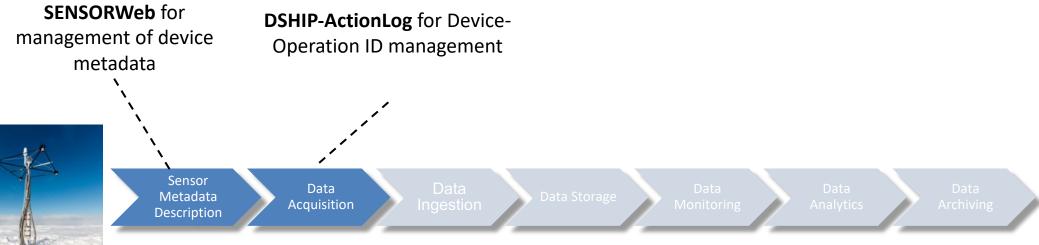
Related to:


Project(s):

Coverage:

MSM29 440-5

Configuration of device at measurement time linked directly to **SENSORWeb**

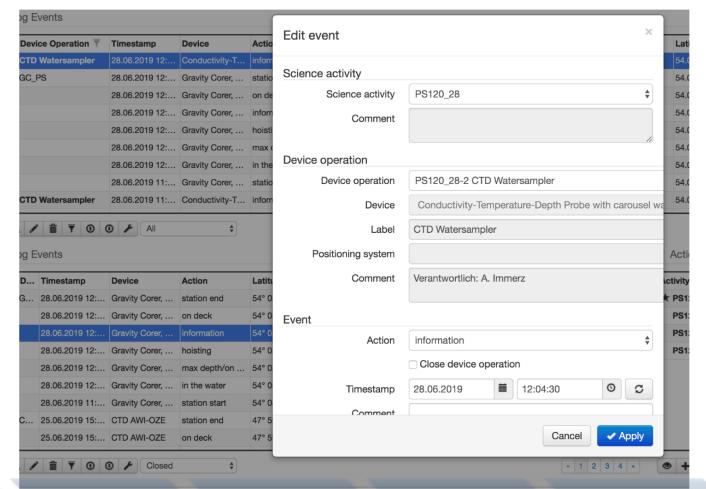

* Latitua Start: 78.714170 * Longitude Start: 5.160830 * Latitude End: 78.715330 * Longitude End: 5.13000 * Date/Time Start: 2013-07-02T19:58:00 * Date/Time End: 2013-07-03T02:58:00 * Elevation Start: -2332.3 m * SENSOR AWI: https://hdl.handle.net/10013/sensor.664525cf-45b9-4969-bb88-91a1c5e97a: b * Location: North Greenland Sea 🔍 * Campaign: MSM29 (HAUSGARTEN 2013) 🔍 * Basis: Maria S. Merian 🔍 *

Data Flow in MOSAiC

DSHIP

✓ Monitoring real-time data from ship sensors

DSHIP Finland Snow School 1 16° 25,8	09° N 155° 38,542°	W 2019-03-10 15:0/:	36 UTC WEIUII
Logging ≡Bridge +			
■ Position			■ Temperature
Position			Air temperature
16° 25,809' N	26,4 °C		
Course			Water temperature
299	16,43 °C		
■ Speed / Depth	■ Direction-Thrust		■ Wind
Speed 5,1 kn	Course 299 * Ship Speed	NW NE	Winddirection true 200 °
3, I KII	5,1 km Wind direction	· · · · · · · · · · · · · · · · · · ·	200
depth	Wind speed 3,3 m/s		Windspeed true
0 m		SW SE.	3,3 m/s
admin ONLINE SYS ACQ TERR			2019-03-10 15:07:36 UTC



- Logs "Science Activities" and "Device Operations" during cruise
- ✓ Logging can be easily done in Webbrowser or using the IceFloeNavi-App

! Devices are imported from SENSORWeb where

- Item state: public
- Contact/role:
 - polarstern dship/ dship connector

Sensor Metadata Description

Data Acquisition Data Ingestion Data Storage

Data Monitoring Data Analytics Data
Archiving
HELMHOLTZ

Structure

- Expedition (per Leg)
 - Science Activity (weekly)
 - Device Operation

Device Operation ID:

<Campaign/Expedition-Leg>_

<Science Activity>-

<No. of Device Operation within Science Activity>

Display in ActionLog:

<Campaign/Expedition-Leg>_<Science Activity>-<Number of Device Operation within Science Activity> <Shortname> (e.g. PS120_28-2 CTD Watersampler")

■ ActionLog Events

↑ Activity - Device Operation ▼	Timestamp	Device	Action	Latitude	Longitude	Depth (m)	Speed (kn)	Course	Latitude (deg)	Longitude (deg)	Wind Dir	Wind Velocity	Tran
PS120_28-2 CTD Watersampler	28.06.2019 12:	Conductivity-T	information	54° 04,977' N	007° 58,006' E	21.3	1.0	285.0	54.082946	7.966764	295.0	4.8	
PS120_27-1 GC_PS	28.06.2019 12:	Gravity Corer,	station end	54° 05,044' N	007° 57,271' E	22.4	9.3	257.9	54.084065	7.954517	330.0	5.2	
	28.06.2019 12:	Gravity Corer,	on deck	54° 05,015' N	007° 58,072' E	21.2	0.0	36.8	54.083582	7.967863	314.0	4.1	
	28.06.2019 12:	Gravity Corer,	information	54° 05,009' N	007° 58,069' E	20.9	0.2	233.5	54.083486	7.967815	310.0	5.2	
	28.06.2019 12:	Gravity Corer,	hoisting	54° 05,011' N	007° 58,078' E	21.2	0.1	305.1	54.083523	7.967969	321.0	3.2	
	28.06.2019 12:	Gravity Corer,	max depth/on	54° 05,011' N	007° 58,076' E	20.8	0.3	110.0	54.083511	7.967926	309.0	4.4	
	28.06.2019 12:	Gravity Corer,	in the water	54° 05,010' N	007° 58,073' E	21.0	0.4	94.5	54.083504	7.967879	309.0	4.4	
	28.06.2019 11:	Gravity Corer,	station start	54° 04,345' N	007° 58,260' E	20.7	7.3	45.8	54.072423	7.971005	318.0	6.7	
PS120_28-1 CTD Watersampler	28.06.2019 11:	Conductivity-T	information	54° 03,956' N	007° 57,546' E	22.2	13.7	48.6	54.065936	7.959104	317.0	7.6	
PS120 27-2 tonAWI	28.06.2019 11:	Towed Ocean	information	54° 03,575' N	007° 57,025' E	23.2	13.9	30.2	54.059586	7.950411	316.0	7.9	

Extract from DHIP Archive (dms.awi.de)

tart) Longitude (deg) (Start) D
7 220 64 522 204 0
7.329 -61.533.381 0
8.644 -61.514.114 3
3.699 -57.751.797 4
1.029 -57.746.836 0
3.826 -57.786.732 0
0.863 -57.798.089 0
4.397 -57.836.353 0
3.392 -57.795.686 0
7.813 -55.918.205 4
9.655 -55.901.400 4
3.801 -55.918.680 4
53 17

Extract of Device Operation ID in ActionLog:

<Campaign/Expedition-Leg>_<Science Activity>-<Number of Device Operation within Science Activity> (e.g. PS120_28-2")

Data Flow in MOSAiC



↑ Activity - Device Operation 🔻	Start	Device	Action	Latitude	Longi
PS4_4-1 ADCP	12.10.2016 11:49:24	Acoustic Doppl	station start	51° 03,088° N	001*
	12.10.2016 11:49:01	Acoustic Doppl	station start	51° 03,157° N	001°
PS4_1-3 BLN	11.10.2016 14:17:22	BALLON	in the water	46° 07,339' N	010°
PS4_1-1 BOAT	11.10.2016 14:13:31	Boat	MyAction	46° 07,251' N	010°

as stream and/or in delayed

mode

Sensor metadata description (SENSORWeb) is the basis for all parts!!!

workspace

MOSAiC Central Storage (MCS)

- Central Storage for raw data and data products
 on board Polarstern
- Naming convention of device area is derived from SENSORWeb

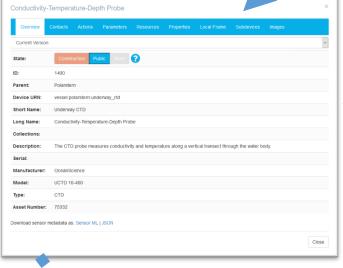
Device Area (Raw Data)

Data transferred to MCS at AWI for common access by MOSAiC consortium members after every leg

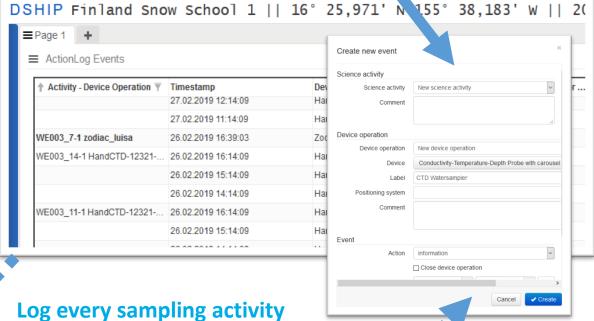
Workspace Area

SENSOR INFORMATION SYSTEM platforms vessel polarstern ctd watersampler SBE3plus temperature sensor exdata DSHIP-DEVICEOPERATION-ID SensorFile.xxx **FerryBox** exdata DSHIP-DEVICEOPERATION-ID SensorFile.xxx vehicle **BEAST ECO-Triplet Fluorometer**

```
Tasks
  Coring
     Site 1
       Quicklooks
       Processed Data
       Combined Datasets
     Site 2
          DN
  SnowPits
     Site 1
     Site 2
     DN
  ROV
```

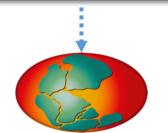



Devices has to be created in SENSOR (only once)


Log every device operation

SENSOR.fs-polarstern.de

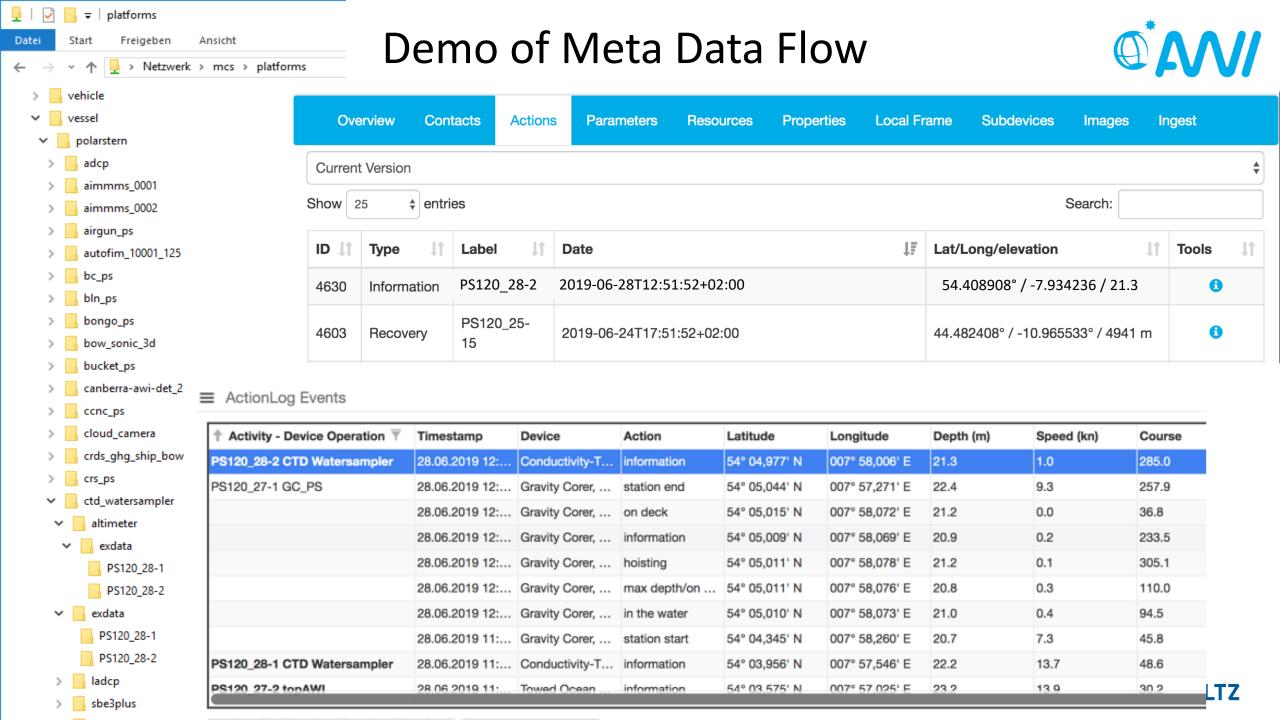
background
Synching
(device &
device operation)


DSHIP-ActionLog

Background creating directories (device & device operation)

Storage MCS

vessel/polarstern/ctd_watersampler/SBE3plus_temp erature_sensor/exdata/DEVICEOPERATION_ID/



IceFloeNavi-App manually
Synching
(device & device operation)

- Directory structure on MCS resembles structure of devices in SENSORWeb
 - Directories automatically created for devices in SENSORWeb with state 'public' and contact ,polarstern dship' with role ,dship connector'!
- Every device directory has subdirectory ,exdata' (stands for "expedition data")
- Device Operation in DSHIP automatically triggers creation of subdirectory with according name in all (sub) device directories selected for operation (within ,exdata').
- Device Operation is to written to device in SENSORWeb (Tab Actions)
- (Raw)data and sampling log sheets are to be uploaded in the respective directories of the Device Operation ID

IceFloeNaviApp to DSHIP

- Log scientific events on the ice
- Available Sensors are imported from DSHIP (SENSOR) (contact Data Supporters)
- Actions from IceFloeNaviApps imported into DSHIP daily by Data Supporters
 - Default: one individual log entry on the ice resembles one Device Operation in DSHIP
 - Actions can be grouped into one Device Operation

■ ActionLog Events

↑ Activity - Device Operation ▼	Timestamp	Device	Action	Latitude	Longitude	Depth (m)	Speed
PS120_28-2 CTD Watersampler	28.06.2019 12:	Conductivity-T	information	54° 04,977' N	007° 58,006' E	21.3	1.0
PS120_27-1 GC_PS	28.06.2019 12:	Gravity Corer,	station end	54° 05,044' N	007° 57,271' E	22.4	9.3
	28.06.2019 12:	Gravity Corer,	on deck	54° 05,015' N	007° 58,072' E	21.2	0.0
	28.06.2019 12:	Gravity Corer,	information	54° 05,009' N	007° 58,069' E	20.9	0.2
	28.06.2019 12:	Gravity Corer,	hoisting	54° 05,011' N	007° 58,078' E	21.2	0.1
	28.06.2019 12:	Gravity Corer,	max depth/on	54° 05,011' N	007° 58,076' E	20.8	0.3
	28.06.2019 12:	Gravity Corer,	in the water	54° 05,010' N	007° 58,073' E	21.0	0.4
	28.06.2019 11:	Gravity Corer,	station start	54° 04,345' N	007° 58,260' E	20.7	7.3
PS120_28-1 CTD Watersampler	28.06.2019 11:	Conductivity-T	information	54° 03,956' N	007° 57,546' E	22.2	13.
PS120 27-2 tonAWI	28.06.2019.11:	Towed Ocean	information	54° 03.575' N	007° 57.025' E	23.2	13

DSHIP

- One account for every teams
- Create Science Activity: Cruise Leader?
- Create Device Operation: Pls/Scientists
 - Include/Exclude Subdevices
 - Add Actions
 - Change Devices Operations (Date, Time, Subdevices)

Synchronisation Details

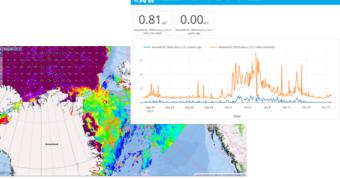
- SENSOR AWI to SENSOR Polarstern (autom. every 10 min)
- SENSOR Polarstern to SENSOR AWI (directly)

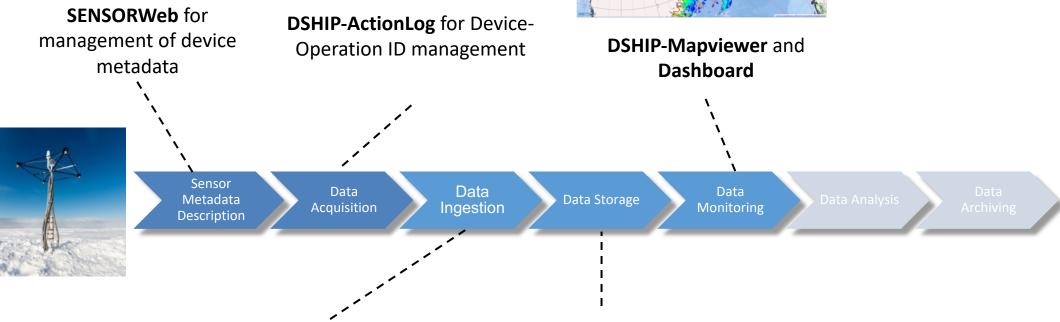
- (Re-)Import device from SENSOR Polarstern to DSHIP
 - Once a day by Data Supporters, additional imports upon request
 - Re-Import Sensors after creating new version in SENSORWeb (e.g. subdevice exchange, recalibration, ...)
- Write DSHIP actions to SENSOR AWI/Polarstern (autom. every 5 min)
- Import Actions from IceFloeNavi App to DSHIP
 - Once a day by Data Supporters, additional imports upon request
- You can edit devices on Polarstern in SENSOR but it is not very convenient due to the limited bandwidth!

SENSOR Best Practices and Workflows

- See Best Practices in MOSAiC Handbook for first orientation
- Will be further documented during the cruise
- Ask Data Supporters, Data Contact Persons and Chief Editors

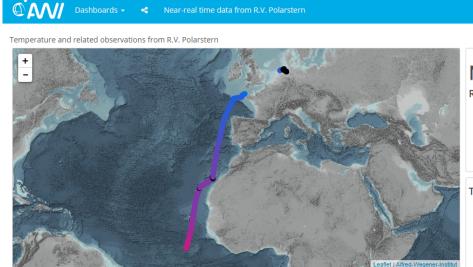
- Special Cases
 - Reassign/Add new subdevices to SENSOR
 - New Version in SENSOR
 - Reimport in DSHIP necessary
 - Recalibrate devices
 - New Version in SENSOR
 - Reimport in DSHIP necessary
 - Run Labinstruments onboard
 - Use 'Add Action' -> Event Relations




Data Flow in MOSAiC

Data transfer via satellite, local LAN, radio LAN as stream and/or in delayed mode MOSAiC Central Storage and workspace

Sensor metadata description (SENSORWeb) is the basis for all parts!!!



Dashboard

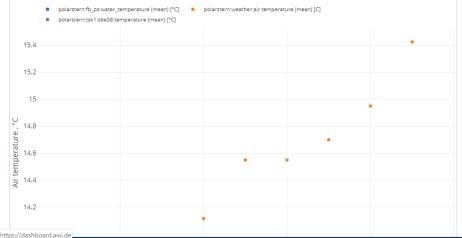
Monitoring of near real-time and delayed-mode data

- 2D graph
- Heatmap
- Map widgets colorcoded paramterts
- and more tools...

Near-real time data from RV Polarstern

Related links

- https://www.awi.de/
- https://data.awi.de
- https://sensor.awi.de/?urn=vessel:polarstern

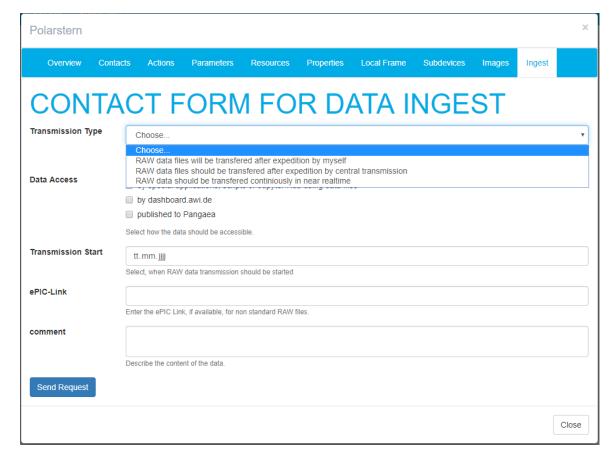

Questions? Email to o2a-support (at) awi.de

Tips

- Click on horizontal (or vertical) axis to focus on a given value range; double-click for reset
- Select/unselect parameter in the legend
- Statistics and download functionality available

Air temperature (device weather station) and water temperature (device thermosalinograph and ferrybox)

Chlorophyll a, Phycocyanin and Oxygen (device ferrybox)

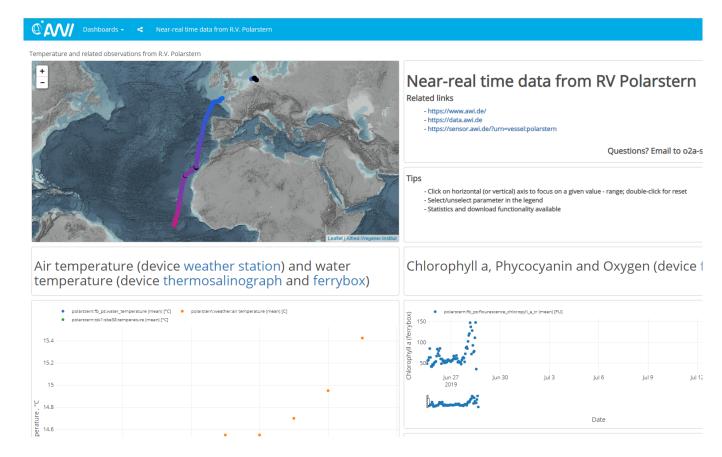

Ingest Data automatically to MCS

Contact Data Supporters for Help

Transmission Methods

- E-Mail
- sftp
- ftp
- smb (Windows-Share)
- rsync (only Download)

Choose transmission type "...continuously in near real-time"



Provide Data in Ingest Database

Contact Data Supporters For Help

- Convert data into CSV Format for import into database
 - To access data via defined interface
 - For display in DASHBOARD

datetime vessel:polarstern:tsk1:salinity [psu]

2019-02-28 15:50:00.000 34.1234 2.443

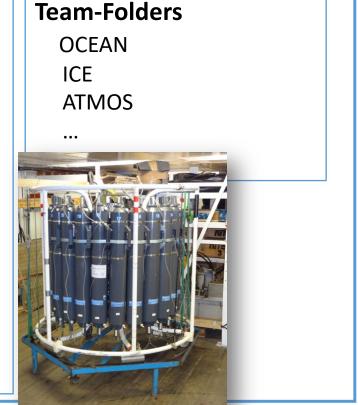
2019-02-28 15:50:01.000 34.1345 2.564

2019-02-28 15:50:02.000 34.1456 2.544

vessel:polarstern:tsk1:sbe38:temperature [°C]

MOSAiC Central Storage (MCS) - Workspace

- Central Storage for raw data and data products on board Polarstern
- Naming convention of device area is derived from SensorWeb


 Data transferred to in Bremerhaven for common access by MOSAiC consortium members

Workspace Area

SENSOR INFORMATION SYSTEM platforms vessel polarstern ctd watersampler SBE3plus temperature sensor exdata DSHIP-DEVICEOPERATION-ID SensorFile.xxx **FerryBox** exdata DSHIP-DEVICEOPERATION-ID SensorFile.xxx vehicle **BEAST ECO-Triplet Fluorometer**

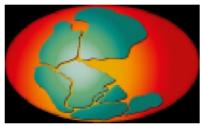
```
Tasks
  Coring
     Site 1
       Quicklooks
       Processed Data
       Combined Datasets
     Site 2
          DN
  SnowPits
     Site 1
     Site 2
     DN
  ROV
```


Quicklooks

Share quicklooks
 (plots, CSV files, etc.)
 of data for a device
 operation for scientists
 on board

Quicklooks

Find quicklooks from your expedition.

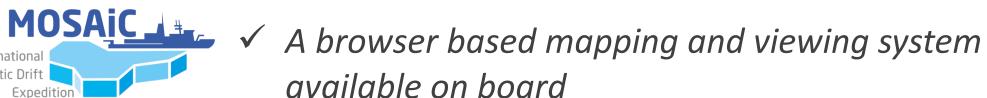

Q Search in task or event description

Task	Event	Date
aircraft_operations	PS122-123	2019-01-01
some deep	PS122-99_depth_matters	2019-01-01
some other	PS122-1-ij	2019-03-01

Platforms and devices

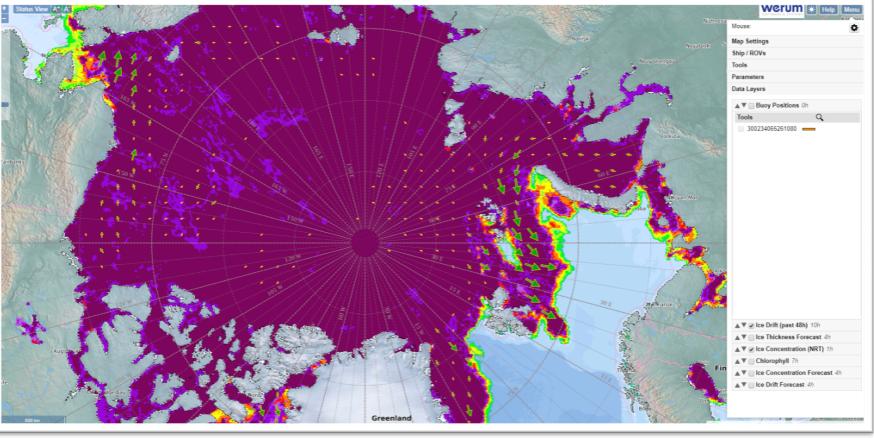
vessel:polarstern:bln_ps vessel:polarstern:crs_ps

Files


very interesting file.xlsx

Provide a quicklook

- Create a quicklooks directory in your tasks storage.
- Create a directory with the event date and name in the quicklooks directory.
 Best practice: yyyy-MM-dd_event. For example: 2019-12-24_Christmas.
- Place your files in the event directory. Images (e.g., jpg, png, gif) get a preview.
- If you like to link your instrument (platform, device), create a metadata.txt file in the event directory.


Best practice: write sensor codes line by line. For example: vessel:polarstern.

Sensor Metadata Description

MAPVIEWER

Data Acquisition

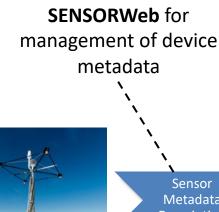
Data Ingestion

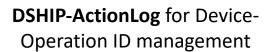
Data Storage

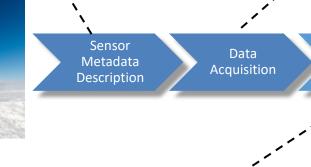
Data Monitoring


Data Analytics

Data Archiving HELMHOLTZ


Data Flow in MOSAiC





Data

Ingestion

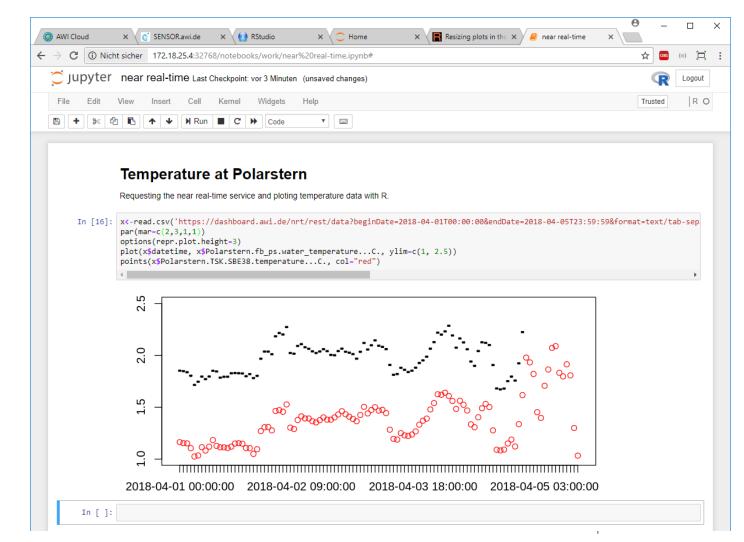
Monitoring

Data transfer via satellite, local LAN, radio LAN as stream and/or in delayed mode MOSAiC Central Storage and workspace

Data Storage

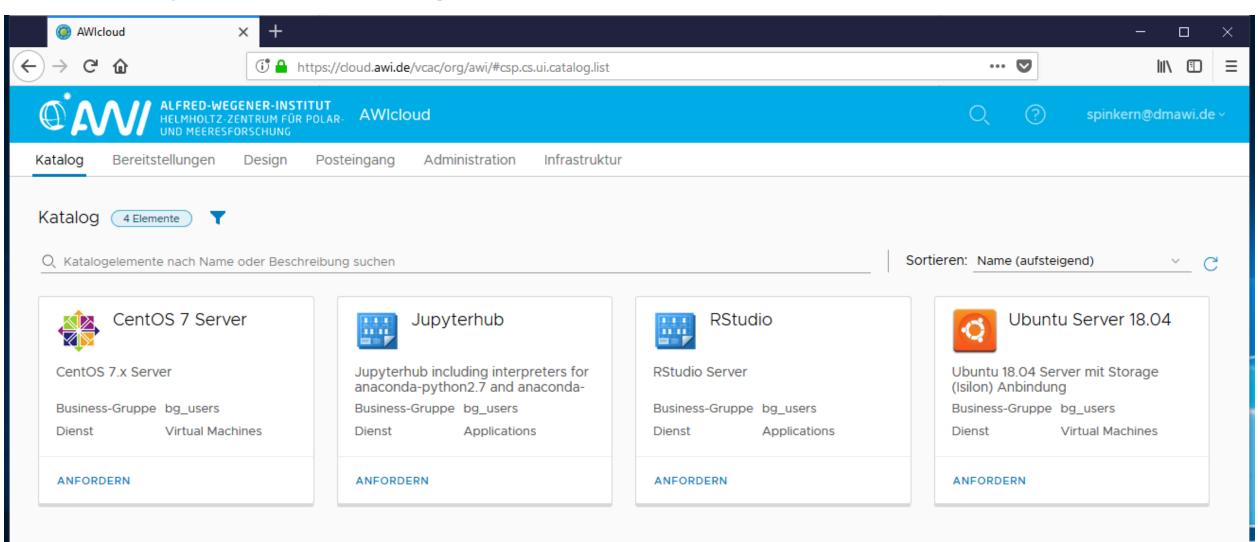
Using workspace and
Marketplace (VMs) e.g. with
Jupyter Notebook (R or
Python) or Bash-Script or or

Analytics

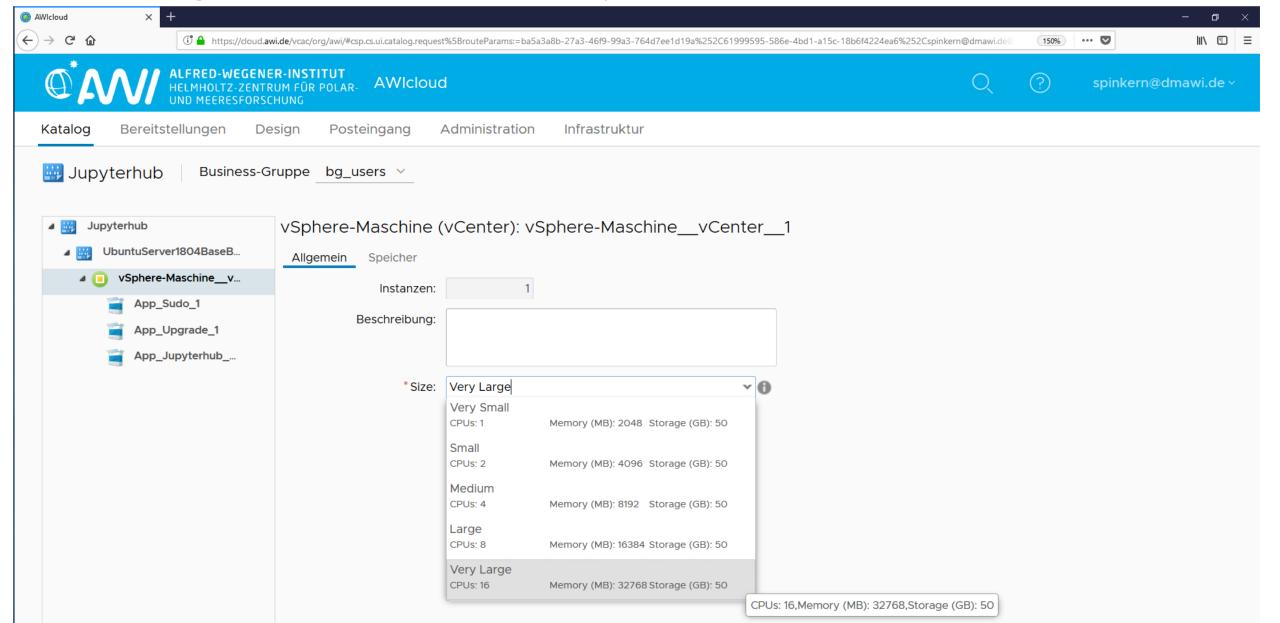


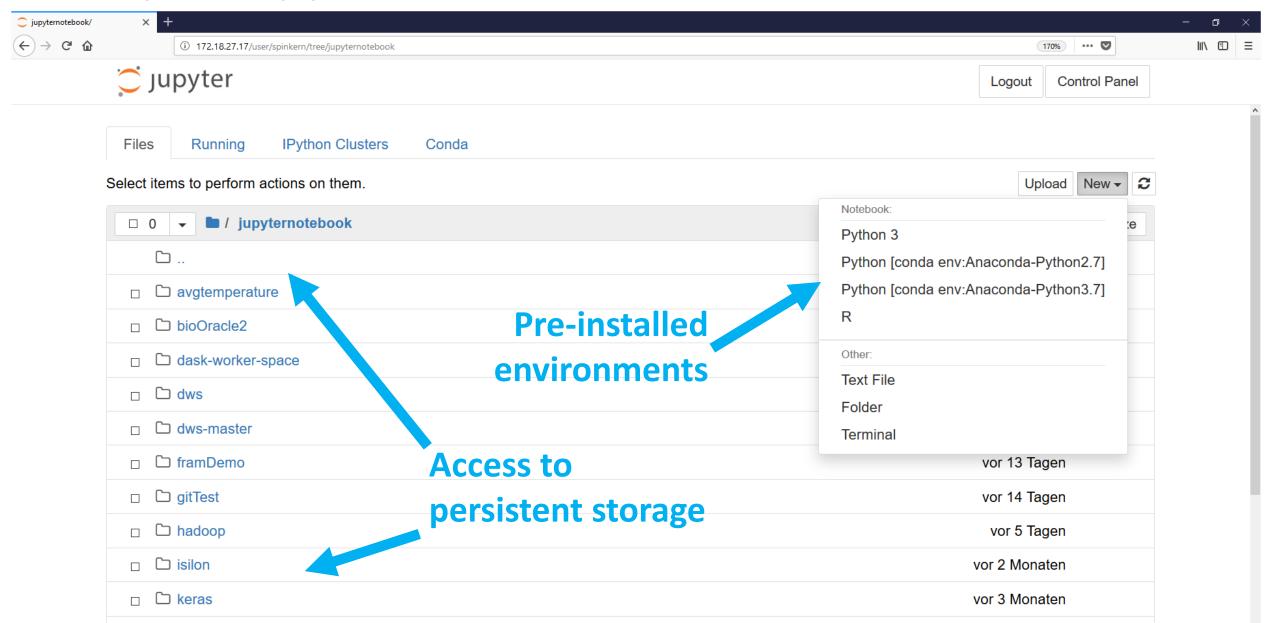
Sensor metadata description (SENSORWeb) is the basis for all parts!!!

Workspace - Solutions



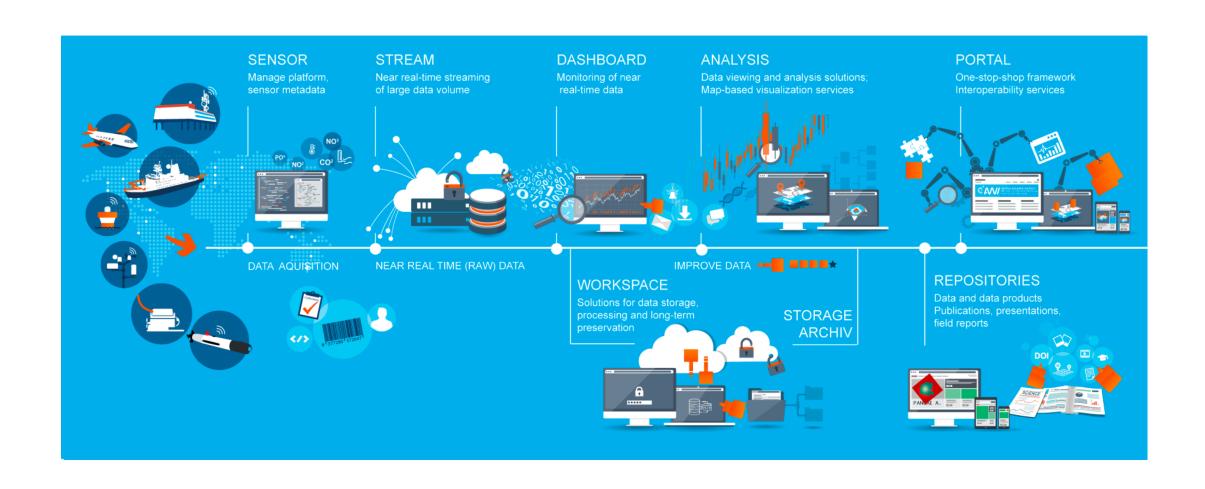
- Virtual Machines with e.g.
 - Jupyter Notebook,
 - R
 - your tools..?

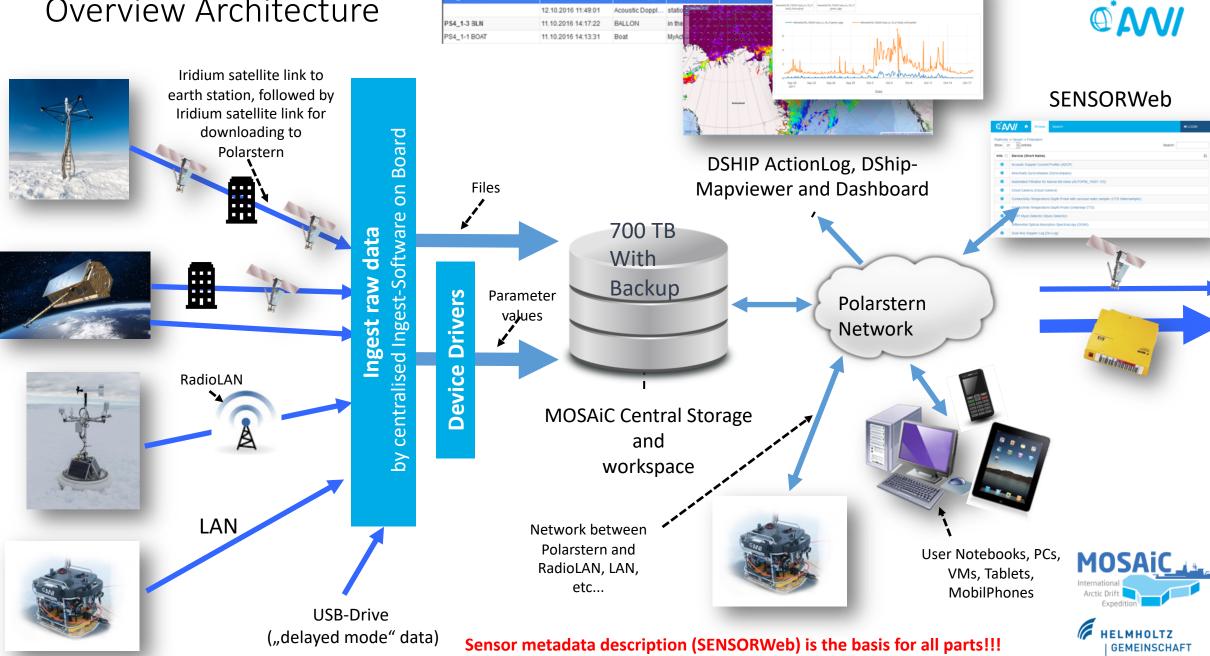

Marketplace Catalog


Ordering an individual compute instance

Example: Jupyter Notebook Server

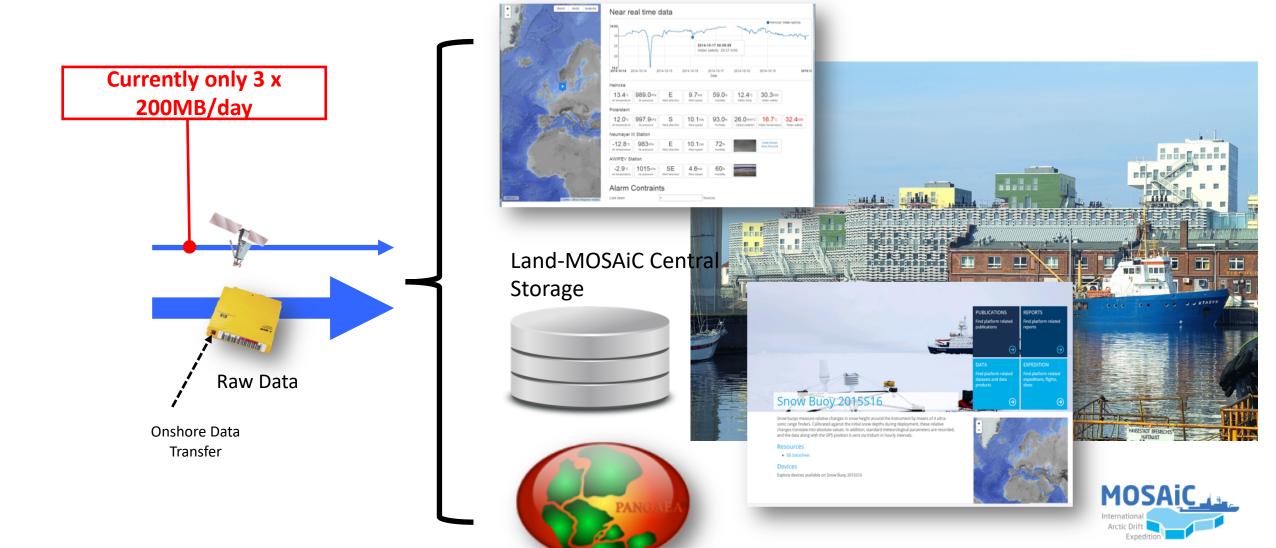
Advantages of Virtual Machines (VMs)


- No configuration of laptop needed to access storage, databases etc. on board
- VMs accessible through network
 - work on machine via any laptop/PC on ship with network access
- No need to carry laptop around
 - Access same state of maschine anywhere
- Accessible to many
 - Share virtual machine with colleagues
- VMs run on server
 - skripts may run overnight while you shut down your laptop



O2A Framework

Overview Architecture


0.81,,, 0.00,,,

Activity - Device Operation T Start

Raw Data at AWI

HELMHOLTZ | GEMEINSCHAFT

Satellite Communication

Version	Volume	Transfer Rates	Remarks
IRIDIUM	Max. 2x100 MB/day	2x128 kbps	Max. 2x 5GB/month Used by buoys
IRIDIUM Certus	Max. 3x200 MB/day	3x700 kbps	1 backup Max.3-4x 10GB/month Testing phase
Nano Satellites		Store & Forward!!	Early testing phase

No internet access available for user pcs and personal laptops!

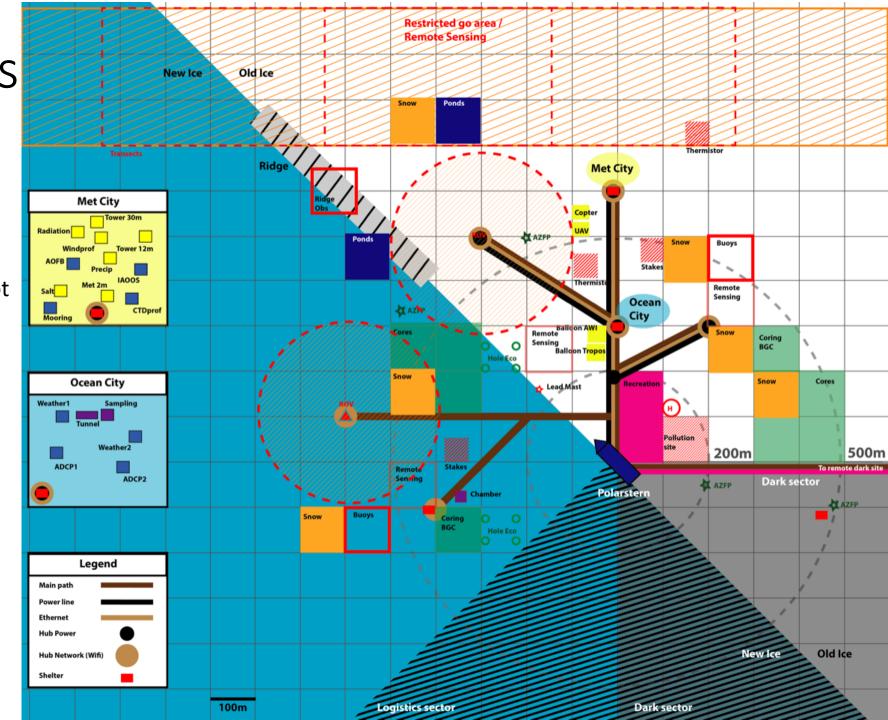
Email Quotas:

Suggested limitations	Iridium
Cruise leader	1 MByte
Group leader	100 kByte
German Weather Service	1 MByte
Helicopter crew	100 kByte
Captain	1 MByte
Ship's management	100 kByte
Scientific participants	50 kByte

Collaboration Tools

- MOSAiC Logbook
- Public server for personal data available on Polarstern
- RocketChat for communication on board

NOT: MS Teams!, google docs, etc.


Network Access

Cabled LAN (glas fibre)

- at power lines
- 1Gbit/s

Radio LAN (Estimated transfer rates (not yet tested in polar regions)

- 50-200 Mbit/s near Polarstern
- 3Mbit/s in 20km distance
- Needs mobile power supply

MOSAiC Services

Documentation of all components is found in the MOSAiC Handbook. If you have any questions, please contact the data supporters.

- User Accounts
 - To obtain your user account with which you can access the services please contact the communications officer on board.
- Storage
 - mcs.fs-polarstern.de
- (Meta)-Data Management Tools
 - SENSORWeb:
 - http://sensor.fs-polarstern.de/
 - Dashboard:
 - http://dashboard.fs-polarstern.de/

- Virtual Workspace Environment and Software Repository
 - Marketplace:
 - http://marketplace.fs-polarstern.de/vcac
 - Repository:
 - https://reposrv1.fs-polarstern.de/
- Communication
 - RocketChat:
 - http://rocket.fs-polarstern.de/
- Quicklooks
 - http://frame-rem1.fs-polarstern.de/quicklooks

SENSOR Chief Editors

- Collect list of devices to be entered in SENSOR for your team
- Act as a multiplicator for SENSOR in team.
 - spread knowledge on updates of SENSOR in team.
 - Filter questions which can already be answered by you for your team
 - Best practices
 - Best configuration of instruments
 - Where to get documentation
 - Spread knowledge
 - on best practices in SENSOR specific for team
 - How SENSOR, DSHIP and MCS relate
 - Act as first contact for questions on SENSOR for team.
- Monitor devices in SENSOR for your team to ensure best practices are followed
 - Item state, mandatory Contacts/Roles, correct configuration

Data Contact Person on Board

- Act as a multiplicator for knowledge
 - on best practices in SENSOR specific for team
 - on SENSOR, DSHIP, MCS on Board
 - how SENSOR, DSHIP and MCS relate
- First contact for questions regarding SENSOR
 - Know Best practices
 - Help reassigning, editing (and entering new) devices
 - Know where to get documentation
- Keep an eye on data for your team.
 - Is raw data being stored in MCS appropriately and in time?

- Data Contact Persons Leg 1
 - ATMOS: Byron Blomquist
 - BGC: Dorothea Bauch
 - ECO: Allison Fong
 - ICE: Julia Regnery
 - OCEAN: Mario Hoppmann

- Chief Editors
 - ATMOS: Peter von der Gathen, Byron Blomquist, Giri Prakash
 - BGC: Dorothea Bauch
 - ECO: Allison Fong, Clara Hoppe
 - ICE: Julia Regnery, Amy MacFarlane
 - OCEAN: Julia Regnery, Sandra Tippenhauer

Data Supporters

- Help with DSHIP, SENSOR, data access and storage on MCS
- Assist with acessing virtual solutions
- Keep an eye on data flow
 - Is raw data being stored in MCS appropriately and in time?
- Help with technical network problems on the ice
- Transfer data from MCS to AWI after each leg

Data Supporters Leg 1

Leg 1aFranziska NehringPeter Gerchow

- Leg 1 a and b
 - Antonia Immerz
 - Johannes Käßbohrer

• Find us in the Bathymetry Room ©

Ready to start?

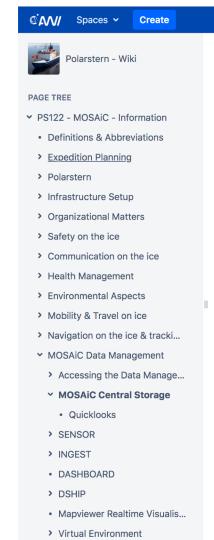
- Register all scientific devices in SENSOR
 - Contact Chief Editor of your team to start
- SENSOR Checklist
 - Add mandatory contacts/roles
 - DSHIP Connector
 - Owner
 - Editor (and Data Provider)
- Ready?
 - Set Item State to "Public"
 - Create Initial Version of type "Comissioned"

- Software to bring to Polarstern for your personal laptops and cellphones
 - RocketChat App
 - Remote Desktop Client to access <u>Virtual Machines</u>:
 - X2Go, or if desired: NX (NoMachine)
 - Microsoft RDP for Windows 10

MOSAiC User Account

- To obtain your user account with which you can access the services please contact the communications officer on board.
- MOSAiC-User-Account created for you using your email address in EIS.awi.de (prerequisite: sign data policy)
- With this user you can afterwards also access the MCS and MOSAiC Infrastructure at the AWI (see mosaic-data.org)

Links and Further Documentation



• MOSAiC Handbook: https://spaces.awi.de/display/EFPW/PS122+-+MOSAiC+-+Information

- sensor.fs-polarstern.de
- dashboard.fs-polarstern.de
- sensor.fs-polarstern.de/quicklooks
- ...

• O2A-Wiki: https://spaces.awi.de/display/DM/MOSAiC

Access MCS at AWI: mosaic-data.org

Pages / ... / MOSAiC Data Management

MOSAiC Central Storage

Created by Antonia Immerz, last modified by Sebastian Immoor on Aug 06, 2019

The MCS is divided into two areas, the platforms area and the workspace area. Emounting the areas as shares or using an ftp-client. For detailed information have

Platforms area

(Raw) data and sample log sheets of a device are stored in the MCS in a director Operation IDs in DSHIP. Raw data obtained during each device operation will be

The platforms area is readable by all participants.

Only users entered as 'Editors' or 'Data Providers' of the specific device in SENS

Workspace area

FerryBox

All participants have read access to the workspace area.

- The workspace area has a tasks directory in which scientists on board car participants to upload and modify data.
 - Quicklooks: Data in folders named "Quicklooks" can be displayed in
- Further there is a Team-Folder in which all scientific teams have a director

Tasks
Coring
Site