Product Description Document Date: 20. 09. 2023 Issue:4.0

SMOS Sea Ice Thickness Product Description Document (PDD)

Document Version

Version	Date	Description	Author	
1.0	25/10/2018	Draft of the Product Description Document	Xiangshan Tian-Kunze (AWI)	
2.0	26/03/2020	Update changes in SMOS product v3.2	Xiangshan Tian-Kunze (AWI)	
3.0	13/10/2021	Update changes in SMOS product v3.3	Xiangshan Tian-Kunze Lars Kaleschke (AWI)	
4.0	20/09/2023	Revision according to the feedbacks from ESA (21 October 2021) Add Antarctic SMOS product v3.3	Xiangshan Tian-Kunze Lars kaleschke (AWI)	

Applicable Documents

Abbreviation	Name	Description
ATBD	AWI_ESA_SMOS_ATBD_v1.1	Algorithm Theoretical Basis Document
RM_TN	AWI_ESA_SMOS_RM-TN_v3.1	ReadMe-first Technical Note

1. Purpose of this Document

The purpose of this document is to describe the content of the **SMOS Sea Ice Thickness Product v3.3.** The document contains a description of the product and its format. Information about scientific algorithms used to generate the product is available in the Algorithm Theoretical Baseline Document [ATBD].

2. SMOS Sea Ice Thickness Product

Parameter Sea ice thickness			
Spatial covergae	Northern hemisphere, poleward of 50°N, -180°E to 180°E Southern hemisphere, poleward of -50°S, -180°E to 180°E		
Spatial Resolution	12.5 km x12.5 km		
Temporal Coverage:	since 15. Oct. 2010 in the northern hemisphere since 15 Apr. 2010 in the southern hemisphere		
Temporal Resolution	1 day		
Data Format(s)	NetCDF v4		
Platforms	SMOS		
Version	v3.3		

Table 1: Overview of SMOS Product

Rationale

The European Space Agency's (ESA) Earth Explorer SMOS satellite can detect thin sea ice, due to the large penetration depth of L-band in sea ice. Up to 1.5m ice thickness information can be derived from brightness temperatures measured by the L-band radiometer onboard of SMOS.

Methods

We retrieve sea ice thickness from daily averaged brightness temperature. The measured Lband brightness temperature mainly depends on the ice concentration, the molecular temperatures of the sea and the ice, and their emissivities (Menashi et al., 1993). The sea ice emissivity depends on the microphysical sea ice structure, but the inhomogeneities, like brine pockets and air bubbles, are much smaller than the SMOS wavelength of 21 cm (Kaleschke et al., 2010, Kaleschke et al., 2012). Therefore, we can consider sea ice as a homogeneous medium and neglect volume scattering. For the assumption of 100 % ice coverage, the sea ice emissivity mainly depends on ice thickness, ice temperature, and ice salinity (Kaleschke et al., 2010). Tian-Kunze et al. (2014) has further improved the retrieval algorithm of Kaleschke et al., (2012), based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. Therefore, the provided sea ice thickness is mean ice thickness. More details of the sea ice retrieval algorithm can be found in Tian-Kunze et al. (2014) and in the ATBD.

File Format

Daily mean SMOS sea ice thickness is given in NetCDF v4 format. Global attributes are given in Table 2 and Table 3 for the northern and southern hemispheres respectively. The list of variables is the same for both hemispheres and is described in Table 4.

Attribute	Value		
title	Daily gridded sea-ice thickness and auxiliary parameters from satellite L-band radiometry data		
project	CS2SMOS PDS CR-1: SMOS Sea Ice Data Product Processing and Dissemination Tasks, supported by ESA		
institution	Alfred-Wegener-Institut Helmholtz Zentrum für Polar und Meeresforschung (AWI), <u>http://www.awi.de</u>		
contributor_name Xiangshan Tian-Kunze, Lars Kaleschke, Stefan Hendric			
publisher_email <u>xiangshan.tiankunze@awi.de</u>			
platform	"ESA Soil Moisture and Ocean Salinity (SMOS) mission"		
sensor	"Microwave Imaging Radiometer using Aperture Synthesis (MIRAS)"		
source	SMOS v724 L1C brightness temperature		
product_version	v3.3		
Processing level	L3c		
grid	NSIDC polar stereographic projection https://nsidc.org/data/polar-stereo/ps_grids.html		
tracking id	08533af0-7656-4f35-b0a8-7ae4081a2c9a		
naming authority	de.awi		

Table 2: Global attributes from an example NetCDF file in the northern hemisphere.

Attribute	Value			
history	Product generated with SMOS sea ice thickness retrieval Algorithm v3.3			
summary	This dataset contains Level-3 daily sea ice thickness products from satellite observations in the northern hemisphere. Northern hemisphere sea ice thickness coverage is limited to the winter month between October and April. 100% sea ice coverage is assumed, which leads to underestimation of sea ice thickness.			
topiccategory	Oceans Climatology Meteorology Atmosphere			
keywords	Earth Science > Cryosphere > Sea Ice > Ice Depth/Thickness, Earth Science > Climate Indicators > Cryospheric Indicators > Ice Depth/Thickness, Geographic Region > Northern Hemisphere, Vertical Location > Sea Surface, Institutions > AWI > Alfred Wegener Institute for Polar and Marine Research			
id	SMOS_Icethickness_v3.3_north_YYYYMMDD			
doi	None			
Date_created	e.g. "Tue Mar 24 17:37:59 2020"			
spatial_resolution	12.5 km grid spacing			
time_coverage_duration	P1D			
time_coverage_start	yyyy-mm-ddT00:00:00			
time_coverage_end	yyyy-mm-ddT23:59:59			
time_coverage_resolution	P1D			
geospatial_bounds_crs	EPSG:3413			
geospatial_lat_max	90.0			
geospatial_lat_min	50.0			
geospatial_lon_max	180.0			
geospatial_lon_min	-180.0			

Attribute	Value
geospatial_vertical_max	0.0
geospatial_vertical_min	0.0
references	 Kaleschke, L., X. Tian-Kunze, N. Maass, M. Maekynen, and M. Drusch (2012), Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett., 39, L05501, doi:10.1029/2012GL050916. (2) Tian-Kunze, X., Kaleschke, L., Maass, N., Maekynen, M., Serra, N., Drusch, M., and Krumpen, T., SMOS-derived sea ice thickness: algorithm baseline, product specifications and initial verification, The Cryosphere, 8, 997-1018, doi:10.5194/tc-8-997-2014, 2014 (3) Kaleschke, L., Tian-Kunze, X., Maass, N., Beitsch, A., Wernecke, A., Miernecki, M. and others, SMOS sea ice product: operational application and validation in the Barents Sea marginal ice zone, Remote Sensing of Environment 180 (2016), 264-273. doi: 10.1016/j.rse.2016.03.009 (4) Tietsche, S., Alonso-Balmaseda, M., Rosnay, P., Zuo, H., Tian-Kunze, X., and Kaleschke, L.: Thin Arctic sea ice in L-band observations and an ocean reanalysis, The Cryosphere, 12, 2051-2072, <u>https://doi.org/10.5194/tc-12-2051-2018</u>, 2018.

Table 3: Global attributes from an example NetCDF file in the southern hemisphere.

Attribute	Value		
title	Daily gridded sea-ice thickness and auxiliary parameters from satellite L-band radiometry data		
project	CS2SMOS PDS CR-1: SMOS Sea Ice Data Product Processing and Dissemination Tasks, supported by ESA		
institution	Alfred-Wegener-Institut Helmholtz Zentrum für Polar und Meeresforschung (AWI), <u>http://www.awi.de</u>		
contributor_name	Xiangshan Tian-Kunze, Lars Kaleschke, Stefan Hendricks		
publisher_email	cs2smos-support@awi.de		
platform	"ESA Soil Moisture and Ocean Salinity (SMOS) mission"		
sensor	"Microwave Imaging Radiometer using Aperture Synthesis (MIRAS)"		

Attribute	Value			
source	SMOS v724 L1C brightness temperature			
product_version	v3.3			
Processing level	L3c			
grid	NSIDC polar stereographic projection https://nsidc.org/data/polar-stereo/ps_grids.html			
tracking id	08533af0-7656-4f35-b0a8-7ae4081a2c9a			
naming authority	de.awi			
history	Product generated with SMOS sea ice thickness retrieval Algorithm v3.3			
summary	This dataset contains Level-3 daily sea ice thickness products from satellite observations in the southern hemisphere. Southern hemisphere sea ice thickness data is limited to the months between February and October. 100% sea ice coverage is assumed, which leads to underestimation of sea ice thickness.			
topiccategory	Oceans Climatology Meteorology Atmosphere			
keywords	Earth Science > Cryosphere > Sea Ice > Ice Depth/Thickness, Earth Science > Climate Indicators > Cryospheric Indicators > Ice Depth/Thickness, Geographic Region > Southern Hemisphere, Vertical Location > Sea Surface, Institutions > AWI > Alfred Wegener Institute for Polar and Marine Research			
id	SMOS_Icethickness_v3.3_south_YYYYMMDD			
doi	None			
Date_created	e.g. "Mon Aug 21 13:01:44 2023"			
spatial_resolution	12.5 km grid spacing			
time_coverage_duration	P1D			
time_coverage_start	yyyy-mm-ddT00:00:00			

Attribute	Value
time_coverage_end	yyyy-mm-ddT23:59:59
time_coverage_resolution	P1D
geospatial_bounds_crs	EPSG:3976
geospatial_lat_max	-50.0
geospatial_lat_min	-90.0
geospatial_lon_max	180.0
geospatial_lon_min	-180.0
geospatial_vertical_max	0.0
geospatial_vertical_min	0.0
references	 Kaleschke, L., X. Tian-Kunze, N. Maass, M. Maekynen, and M. Drusch (2012), Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett., 39, L05501, doi:10.1029/2012GL050916. (2) Tian-Kunze, X., Kaleschke, L., Maass, N., Maekynen, M., Serra, N., Drusch, M., and Krumpen, T., SMOS-derived sea ice thickness: algorithm baseline, product specifications and initial verification, The Cryosphere, 8, 997-1018, doi:10.5194/tc-8-997-2014, 2014 (3) Kaleschke, L., Tian-Kunze, X., Maass, N., Beitsch, A., Wernecke, A., Miernecki, M. and others, SMOS sea ice product: operational application and validation in the Barents Sea marginal ice zone, Remote Sensing of Environment 180 (2016), 264-273. doi: 10.1016/j.rse.2016.03.009 (4) Tietsche, S., Alonso-Balmaseda, M., Rosnay, P., Zuo, H., Tian-Kunze, X., and Kaleschke, L.: Thin Arctic sea ice in L-band observations and an ocean reanalysis, The Cryosphere, 12, 2051-2072, https://doi.org/10.5194/tc-12-2051-2018, 2018.

Variable	Long name	Unit	Туре	Scale factor	Dimensi on
latitude	latitude coordinate	degrees_north	float32	1.f	896 x 608
longitude	longitude coordinate	degrees_east	float32	1.f	896 x 608

Variable	Long name	Unit	Туре	Scale factor	Dimensi on
X	x coordinate of projection	km	float32		608
у	y coordinate of projection	km	float32		896
sea_ice_thickne ss	SMOS sea ice thickness	m	float32	1.f	1 x 896 x 608
ice_thickness_u ncertainty	sea ice thickness total uncertainty	m	float32	1.f	1 x 896 x 608
saturation_ratio	ratio of retrieved ice thickness and maximal retrievable ice thickness	%	int16		1 x 896 x 608
ТВ	brightness temperature intensity (TBh+TBv)/2	K	float32	1.f	1 x 896 x 608
TB_uncertainty	brightness temperature uncertainty defined as one standard deviation of TB devided by the sqrt(nPair)	K	float32	1.f	1 x 896 x 608
Tsurf	SMOS derived snow surface temperature	K	float32	1.f	1 x 896 x 608
Sice	Bulk ice salinity	psu	float32	1.f	1 x 896 x 608
nPair	number of TBh and TBv pairs available		int16		1 x 896 x 608
RFI_ratio	percent of RFI- contaminated measurements in total measurements	%	float32		1 x 896 x 608
land	land_binary_mask		int8		896 x 608

Variable	Long name	Unit	Туре	Scale factor	Dimensi on
time	hours since 2010- 01-01 00:00:00	hour	double		1

Grid

Table 5: Northern Hemisphere Grid Coordinates of NSIDC Polar Stereographic Grids

X (km)	Y (km)	Latitude (deg)	Longitude (deg)	position
-3850	5850	30.98	168.35	corner
0	5850	39.43	135.00	midpoint
3750	5850	31.37	102.34	corner
3750	0	56.35	45.00	midpoint
3750	-5350	34.35	350.03	corner
0	-5350	43.28	315.00	midpoint
-3850	-5350	33.92	279.26	corner
-3850	0	55.50	225.00	midpoint

(ref.: https://nsidc.org/data/polar-stereo/ps_grids.html)

Table 6: Southern Hemisphere Grid Coordinates of NSIDC Polar Stereographic Grids

(ref.: <u>https://nsidc.org/data/polar-stereo/ps_grids.html</u>)							
X (km)	Y (km)	Latitude (deg)	Longitude (deg)	position			
-3950	4350	-39.23	317.76	corner			
0	4350	-51.32	0.00	midpoint			
3950	4350	-39.23	42.24	corner			
3950	0	-54.66	90.00	midpoint			
3950	-3950	-41.45	135.00	corner			
0	-3950	-54.66	180.00	midpoint			
-3950	-3950	-41.45	225.00	corner			
-3950	0	-54.66	270.00	midpoint			

Data Sources

V724 L1C SMOS brightness temperature measurements are collected during one day and averaged and interpolated to build L3B daily brightness temperature in 12.5 km NSIDC polar stereographic grid. Two auxiliary data sets are used as boundary conditions in the retrieval: JRA55 reanalysis with 1.25° grid resolution and Sea Surface Salinity (SSS) climatoloby from model outputs. In the Arctic the SSS climatology is based on MIT General Circulation Model (MITgcm) outputs from 2002-2009 (Tian-Kunze et al., 2014). The model is adjusted in the Arctic region with 4 km grid resolution. SSS climatology in the Antarctic is based on the monthly model outputs of GECCO, a quasi-global simulation in 1°x1° grids using MITgcm model over the years of 1952-2001 (Köhl and Stammer, 2008). Both auxiliary data sets are interpolated to 12.5 km grids to match the L3B brightness temperature.

File naming convention

Currently, the data is provided in NetCDF 4 standard format and the files are named as

SMOS_Icethickness_v3.3_north_<date>.nc SMOS_Icethickness_v3.3_south_<date>.nc

3. Sample data record

Figure 1 shows an example of SMOS sea ice thickness map in the Arctic, on 15 October, 2021.

Fig. 1. Sea ice thickness map in the Arctic, 15 October, 2021.

Figure 2 shows an example of SMOS sea ice thickness map in the Antarctic, on 15 May, 2022.

Fig. 2. Sea ice thickness map in the Antarctic, 15 May, 2022.

References

Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonboe, R. T.: A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The Cryosphere, 4, 583-592, doi:10.5194/tc-4-583-2010, 2010.

Kaleschke, L., X. Tian-Kunze, N. Maass, M. Maekynen, and M. Drusch (2012), Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett., 39, L05501, doi:10.1029/2012GL050916.

Kaleschke, L., Tian-Kunze, X., Maaß, N., Beitsch, A., Wernecke, A., Miernecki, M., Müller, G., Fock, B. H., Gierisch, A. M., and others.:SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone, Remote Sensing of Environment, 180, 264-273, doi:http://dx.doi.org/10.1016/j.rse.2016.03.009, 2016.

Köhl A. and D. Stammer (2008), Variability of the Meridional Overturning in the North Atlantic from the 50 years GECCO State Estimation, J. Phys. Oceanogr., 38, 1913-1930.

Menashi, J., Germain, K., Swift, C., Comiso, J., and Lohanick, A.: Low-frequency passivemicrowave observations of sea ice in the Weddell Sea, J. Geophys. Res., 98, 22569–22577, 1993.

Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification, The Cryosphere, 8, 997–1018, doi:10.5194/ tc-8-997-2014, URL http://www.the-cryosphere.net/8/997/2014/, 2014.

Tietsche, S., Alonso-Balmaseda, M., Rosnay, P., Zuo, H., Tian-Kunze, X., and Kaleschke, L.: Thin Arctic sea ice in L-band observations and an ocean reanalysis, The Cryosphere, 12, 2051-2072, https://doi.org/10.5194/tc-12-2051-2018, 2018.